

Future Internet Monitoring and Measurement (Mo/Me) Requirements

Felix Strohmeier, Salzburg Research, Austria

Joint MOMENT-PRISM Workshop on Future Internet Design: Aspects of network monitoring, privacy and security

Monday, 28 Sept. 2009, Brussels

Contents

- Internet Evolution and Future Internet
- Future Internet Monitoring Reasons and Challenges
- A Look Towards ANMS
- Conclusion

Internet Evolution

- Internet Evolution has an enormous speed
 - Multiple dimensions
 - Content, Network & Services
 - Still growing amount of users and applications
 - Increased complexity
 - New business models
 - Major problems circumvented by "patching"

Future Internet

- Pervasive and Trustworthy
 - High-speed, scalable, ubiquitous, efficient, ...
 - Autonomic, Cognitive Networks
 - FOT: Federated, Open, Trusted Platforms
- Revolution vs. Evolution
 - Clean-slate: Many applied patches could be avoided, all-in-one simplified architecture
 - Incremental: Complexity will increase further, autonomous networking required

2 Major Questions

 What challenges are implied on Future Internet Mo/Me?

 How can the Internet Mo/Me Community support Future Internet developments?

Mo/Me Reasons

- Mo/Me for network/service exploration
 - "only difference between network research and hacking is intention"
- Mo/Me for network/service operation
 - Closed or open loop controls
- Mo/Me for legal requirements
 - Data retention, legal interception

Mo/Me Challenges (I)

- Major network developments
 - Bandwidth
 - Number of connected devices
 - Virtual networks
 - How predictable are virtual links?
 - How to distribute slices?
 - Overlay networks
 - Critical infrastructure
 - Privacy & Security Threats
 - Extensive mobility
 - Extensive firewalling
 - QoS sensible applications
 - Measurement information across domain boundaries
- How can we approach those challenges?

Mo/Me Challenges (II)

- Increasing Mo/Me flexibility
 - Programmability of measurements
 - Configurability at runtime
 - Stay technology independent
- Providing integrated analysis
 - Apply prediction models (e.g. for mobility)
- Considering control theory
 - Performance, delay in feedback loops
 - How fast we can get measurements?
 - How accurate are they?
 - Noise-removal
 - Stability
 - Adaptive control, adaptive measurements
 - Centralised and/or distributed control

Mo/Me Challenges (III)

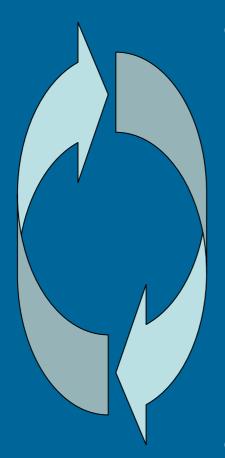
- Using standard metrics
- Using standard formats
 - Enable exchange of measurement data
- Introducing utility-awareness
- Considering scalability
 - Different device types
 - Different load situations
- Introducing access control
 - Encrypted storage
- Abstracting different time scales
 - Longer time scales -> higher abstractions

Mo/Me Challenges (IV)

- Summary
 - Environments are increasingly complex
 - Treat results correctly is a challenge
 - Standardised models of networks
 - Be aware of the aftermath
 - Plan measurements accordingly
 - Keep the balance
 - Path between insufficient and exhaustive monitoring is narrow

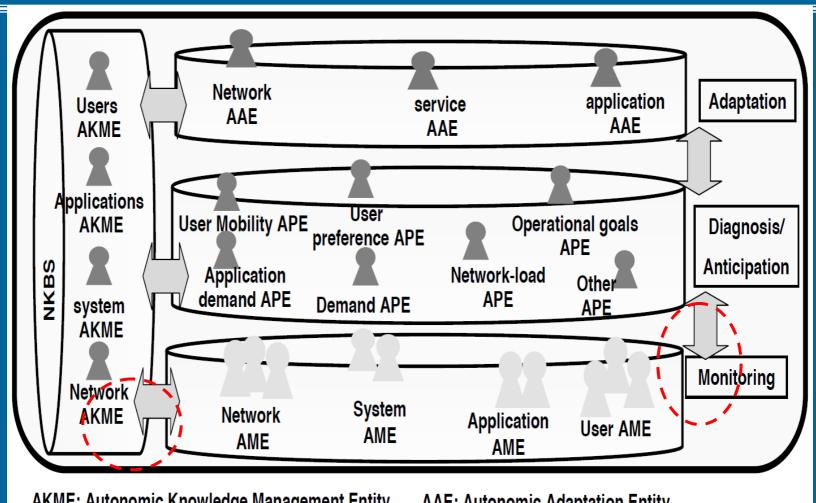
A Look Towards ANMS

(Autonomic Network Management System)


- (Autonomic) network management is a major Mo/Me application area
- Autonomic computing introduced by IBM in 2001
 - Self-CHOP properties
 - -configuration, -healing, -optimization, -protection
 - Implies self-KNOWLEDGE
- → ANMS requires a network knowledge-base system (NKBS)

ref: SAMAAN and KARMOUCH: TOWARDS AUTONOMIC NETWORK MANAGEMENT:
AN ANALYSIS OF CURRENT AND FUTURE RESEARCH DIRECTIONS

ANMS - NKBS


- Knowledge base
 - Key factor in autonomic management
- Types of knowledge
 - DOMAIN
 - STRUCTURE & BEHAVIOUR
 - e.g. topology and queuing mechanisms
 - CONTROL
 - Management actions: e.g. increasing buffer size
- Described in (semantic) models of
 - Network, Users, Applications, Business goals,
 System (Services) → ETSI ISG: MOI

ANMS – the MAPE loop

- Sensor
 - Monitor
 - Symptom
 - Analyze
 - Request for change
 - Plan
 - Changed plan
 - Execute
- Effector

Mo/Me in ANMS

AKME: Autonomic Knowledge Management Entity

NKBS: Network Knowledge-Base System

APE: Autonomic Prediction Entity

AAE: Autonomic Adaptation Entity

AME: Autonomic Monitoring Entity

ADE: Autonomic Diagnosis Entity

Autonomic Monitoring in ANM

- Continuously adjust operations
 - Accuracy vs. overhead
- Different approaches
 - Active / passive / hybrid
 - Distributed / centralized
 - Granularity
 - Detail level: byte / packet / flow / aggregate
 - Sampling rate: seconds / min / hours / ...
 - Spatial: end-to-end / link properties
 - Timing: interval-based / event-based
 - Programmability: dynamic modification

Conclusions

- What challenges are implied on Future Internet Mo/Me?
 - Many -> must keep pace with developments
- How can the Internet Mo/Me Community support Future Internet developments?
 - Provide know-how on behaviours
 - Develop new future Mo/Me applications
 - QoE-driven routing
 - Automatic identification and description of anomaly & malicious traffic/software
 - etc.

Discussions welcome!

Acknowledgements to the MOMENT+PRISM consortium members

Telefónica I+D

Institut für Offene Kommunikationssysteme

Contact:

Felix Strohmeier, Salzburg Research

Tel: +43 662 2288 443

felix.strohmeier@salzburgresearch.at

http://www.fp7-moment.eu

http://www.fp7-prism.eu