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Why Privacy in Network Monitoring

* Massive
amount of data
delivered

— Data mining

— Statistical
analysis

— Behavioural
profiling
— Data misuse

28 Sept. 2009, Brussels

but with recent
advances in eavesdropping technology, they can now spy on people
in unprecedented ways.

This is only the leading edge of
a coming storm of unprecedented and invasive ISP surveillance.

* Source: Paul Ohm, The Rise and Fall of Invasive ISP Surveillance,
University of Illinois Law Review, 2009

behavioural advertisement

European Privacy rules are crystal clear: a person’s information can
only be used with their prior consent. And we cannot give up this
basic principle, and have all our exchanges monitored, surveyed and
stored, in exchange for a promise of "more relevant” advertisement!

* Source: Viviane Reding’s weekly videomessage theme: protecting
privacy in the digital age, April 14, 2009
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Two-tiered Approach

Front-end Traffic Probe

support PRIVACY
[ Front-end encryption | PRI
CONTROLLER

PUBLIC
DOMAIN

Semantic Access Control Middleware

Anonymisation &
OUTSOURCED embedded Internal

Monitoring

MONITORING data processing Applications

APPLICATION components
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The 4 PRISM research directions

* As much traffic analysis (and output

filtering) as possible directly on the probe
— Obvious scalability & privacy gain

* per flow encryption + escrow mechanisms

— Decrypt only “relevant” flows by expressing decrypt
conditions in terms of monitoring events

* Privacy Preserving Access Control

Access only data types “permitted” for a specific
monitoring task

* Anonymization
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“matched monitoring” concept

Trace storage

i

Back-end
g T

Back-end

Front-end Traffic Probe

Front-end
application-specific . . application-specific
processing & filtering . only information embedded processing
kvA strictly necessary to the kvA
monitoring application

Back-end
or Privacy-versus-utility-trade-off: = specific Monitoring
to the envisioned monitoring process

Monitoring
Application

Application

Technical enforcement of proportionality
principle behind privacy preservation
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PRISM achievements in FE processing

Front-end Traffic Probe Iargely exploited as basic blocks
In monitoring apps

stateless, on the fly

* PRISM contribution:

* Bloom-filter based approaches
trade performance and scalability with (bounded) approximation

* Front End adaptation for variety of apps
* Including hardware Front-End pre-filter for SNORT
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Background: Bloom filters

* Bloom Filters Insert(x=131.175.21.1")

— Probabilistic data structure for | I ‘
storing and checking set Hi(x)  JH2(x) H3(x

_ Mmemborstip 5t Ay e

— Trade memory for certainty Hiy)  Ha(y) Ha(y)
memory << list
— n x sizeof(element) Lookup(y=“160.80.80.1")= NO

* May provide WRONG response
— False positive probability

* Counting Bloom Filters (CBFs)

— Allow element deletion :
Bit array = Counters array

* CBFs with conservative update

— Permit extremely efficient

counting and accounting (Estan, :
Varghese 2002) Increment only smaller bin
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PRISM FE monitoring advances

* New, more efficient, data structures
— Multi-layer compressed counting Bloom filters
— Blooming trees & optimised blooming trees
— Improving deterministic finite automata

* New FE monitoring functionalities

— Rate Metering e
_ presented
— Scan detection next as

example

07 May 2009 PRISM First Review, Brussels



From counting to rate monitoring

* Counting Bloom filters with Count(x="131.175.21.1")
conservative update I

| |
- Very efficient (only min bin ++) T
‘|

* But...
_ ReqUIre a tlme WlndOW Count(x=n131175211u)

* too short < flows span over | |
* 100 long > memory consumptior 1]

\"4
NEEREAER
* Qur achievement: 2

— From count to rate Count(x="160.80.82.29")
measurement!

— Surprise: simpler than | l \lf
oxpected! T
|
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Approximate token bucket

* |dea: decrement all bins periodically
— Proof:. exact operation!

* Result:

— Bins decrement rate

* Threshold on average rate overflow
— Example: decrement window = 0,2 seconds - rate overflow when
long term rate is greater than 5p/second offered
— Bins size
* Threshold on peak rate

— Example: bins = 4 bits - overflow detected when 16 packets in a
window, 17 in two consecutive windows, 18 in three, etc. (detected
traffic envelope)

* Equivalent to token bucket with same rate and peak
parameters!
— But approximate operation
— False positive = counting errors (always in excess, though)

28 Sept. 2009, Brussels Workshop on Future Internet Design
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Performance and efficiency

*  With marginal memory deployed:
— Excellent measuring accuracy

— Guaranteed stable operation when
# packets/window < array size / k

* But results show more than double sustained load
* Example
— 1 Gbps link, fully loaded with 500 byte packets at wire speed
— Target rate overflow detection = 2 Mbps - 1024 counters only!
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Detecting scans

* ARP scans
Host/Port scans
ICMP scans

* Patterns frequently
appearing in DDoS and as
preparation of attacks, ...

* Problem largely different
from that solved with BF
and CBF

* Ornot?

* Can we design a front-end
on the fly scan detector?

28 Sept. 2009, Brussels

... MACsrc=F1, .... targetIP=X1,...

... MACsrc=F1, .... targetiP=X2,...

... MACsrc=F1, .... targetlP=X3,...

... MACsrc=F1, .... targetiP=X4,...

.... targetlP=Xs5,...

F1 =5 “variations” - suspected scan
F2 =1 “variation”
F3 =1 “variation”
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Scan detect = count variations

_Jmacsre=F1,]] targetip=x1,.] 2
_fmacsrc=r1 | ] targetip=x2, ] [l ¢
Imacsro=r1,] | targetip=x3, | L
| macsre=r3 [ Ttargetip=z,.. | JC

" wacsre=F3 [ Jtargetip=z, .| I ¢
[ {macsrc=F1,] ] targetip=xs, | L ¢

| Jmacsre=F1] ] targetip=x5,.] L/
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Variation detection: Coupled BFs

detecting

Detector Filter
[ISERS Learning Filter
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Variation Detector: HW impl.

* BF Implemented as a RAM

— Delay for filter reset (1 ram access every
CLK period)

* Three BFs

— “cleaning” filter needed
* (BF reset is slow > RAM)

* Three simple hash function

used (General hash function)

— RS hash (Robert Sedgwicks)
— JS hash (Justin Sobel)
— PJW hash (Peter J. Weinberger)

* CBF implementation ongoing

28 Sept. 2009, Brussels Workshop on Future Internet Design
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HW Front-End for SNORT

* Content + Uricontent match

— String matching: Bloom filter or exact approach

* PRCE - DFA, NFA

— Fact: most rules use PCRE only after content/uricontent match

— Or only for very specific traffic (e.g., RPC) which can be detected
with other rules

* TCP/HTTP reassembly
— Appareltly THE major problem (HW would not scale)

* But fact 2: full reassembly NOT necessary!
— ad hoc solutions being considered (ACK or 3-way handshake reconstructions)

* And partial signature matching viable

—_— SNORT FE Legacy
HW SNORT
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HW approaches

* Bloom filter based:
— Memory efficient, but not really HW-amenable: BF in RAM

* Exact string matching

* An AND port for every content to match
* A flip-flop chain to keep trace of old byte in the packet

— not as inefficient as initially thought!
— ++: Support for more complex snort rules
— ++: Implementation easily extended to regular expression matching

E 9 9 %
= ..
R B
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Content match with modifiers

* Proposed approach (including registers and counters) support
rules with modifiers

— offset, depth, distance, within

content:"HTTP/1.1 200 OK"; - HW implem. (VHDL)
flenth:15;
copdentyalidex-of /2 within:200;) and

count_payload-register 99 1<=200
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Current Implementation

* NetFPGA (xilinx Virtex X2V50)

— 1 gbps link speed

content match without modifiers * content match with modifiers
— All content in the snort rule set (1) — 400 SNORT rules
— String truncated to 40 bytes — (we estimate 2000 rules capacity)

28 Sept. 2009, Brussels Workshop on Future Internet Design
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With more performing COTS HW

» With up to date FPGA (e.g. Virtex V TXT):

— provides 30X logic resources
— achieve 600 MHz (4,8X) data processing
— Support for higher data rate (10 Gbps = 100)

* Parallelized version of our preliminary
prototype should process 2000 rules at

— 1Gbps X 4.8 (speed factor) X 30 (paral.
factor)= scaling to 144Gbps seems easy

28 Sept. 2009, Brussels Workshop on Future Internet Design
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Conclusions

* Front-End analysis capabilities:
— Functionalities well beyond our initial expectation

» Application-matched FE processing

— Strong data reduction = scalability

— Matched data reduction = technical enforcement of
privacy’s necessity principle

* Privacy preservation

— Specific privacy preserving solutions addressed
* e.g. crypto
— But the aftermath is: privacy comes as “side effect”!

28 Sept. 2009, Brussels Workshop on Future Internet Design
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Multi-layer compressed CBF

* Idea 1: Huffman-encode CBF 1001 [1]ofo{1][1[1]o]1]0]
1

— 0->0; 1210; 2->110; 3=->1110; ...

— Apparently not convenient, but... n

* Fact 2: Efficient “popcount”
operation native in NP or CPU

* Fact3: Lookup much more frequent
than insertions/deletions

* Idea: Multilayer structure

0
0

(@ 0]
1o [rlofolr[1]r]o]d]0]
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ML-CCBF savings

BF size = 32768; # Hash = 10 (optimal at 2270 inserts)

20 - - - - & ML-CCBF
CBF

18+

g
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