_7; CILE

Fast, Scalable and privacy-

preserving data processing for “on-
link” network monitoring: The PRISM

approach

28 Sept. 2009, Brussels Workshop on Future Internet Design

Why Privacy in Network Monitoring

* Massive
amount of data
delivered

— Data mining

— Statistical
analysis

— Behavioural
profiling
— Data misuse

28 Sept. 2009, Brussels

but with recent
advances in eavesdropping technology, they can now spy on people
in unprecedented ways.

This is only the leading edge of
a coming storm of unprecedented and invasive ISP surveillance.

* Source: Paul Ohm, The Rise and Fall of Invasive ISP Surveillance,
University of Illinois Law Review, 2009

behavioural advertisement

European Privacy rules are crystal clear: a person’s information can
only be used with their prior consent. And we cannot give up this
basic principle, and have all our exchanges monitored, surveyed and
stored, in exchange for a promise of "more relevant” advertisement!

* Source: Viviane Reding’s weekly videomessage theme: protecting
privacy in the digital age, April 14, 2009

Workshop on Future Internet Design 2

Two-tiered Approach

Front-end Traffic Probe

support PRIVACY
[Front-end encryption | PRI
CONTROLLER

PUBLIC
DOMAIN

Semantic Access Control Middleware

Anonymisation &
OUTSOURCED embedded Internal

Monitoring

MONITORING data processing Applications

APPLICATION components

28 Sept. 2009, Brussels Workshop on Future Internet Design 3

The 4 PRISM research directions

* As much traffic analysis (and output

filtering) as possible directly on the probe
— Obvious scalability & privacy gain

* per flow encryption + escrow mechanisms

— Decrypt only “relevant” flows by expressing decrypt
conditions in terms of monitoring events

* Privacy Preserving Access Control

Access only data types “permitted” for a specific
monitoring task

* Anonymization

28 Sept. 2009, Brussels Workshop on Future Internet Design 4

“matched monitoring” concept

Trace storage

i

Back-end
g T

Back-end

Front-end Traffic Probe

Front-end
application-specific . . application-specific
processing & filtering . only information embedded processing
kvA strictly necessary to the kvA
monitoring application

Back-end
or Privacy-versus-utility-trade-off: = specific Monitoring
to the envisioned monitoring process

Monitoring
Application

Application

Technical enforcement of proportionality
principle behind privacy preservation

28 Sept. 2009, Brussels Workshop on Future Internet Design

PRISM achievements in FE processing

Front-end Traffic Probe Iargely exploited as basic blocks
In monitoring apps

stateless, on the fly

* PRISM contribution:

* Bloom-filter based approaches
trade performance and scalability with (bounded) approximation

* Front End adaptation for variety of apps
* Including hardware Front-End pre-filter for SNORT

28 Sept. 2009, Brussels Workshop on Future Internet Design 6

Background: Bloom filters

* Bloom Filters Insert(x=131.175.21.1")

— Probabilistic data structure for | I ‘
storing and checking set Hi(x) JH2(x) H3(x

_ Mmemborstip 5t Ay e

— Trade memory for certainty Hiy) Ha(y) Ha(y)
memory << list
— n x sizeof(element) Lookup(y=“160.80.80.1")= NO

* May provide WRONG response
— False positive probability

* Counting Bloom Filters (CBFs)

— Allow element deletion :
Bit array = Counters array

* CBFs with conservative update

— Permit extremely efficient

counting and accounting (Estan, :
Varghese 2002) Increment only smaller bin

07 May 2009 PRISM First Review, Brussels 7

PRISM FE monitoring advances

* New, more efficient, data structures
— Multi-layer compressed counting Bloom filters
— Blooming trees & optimised blooming trees
— Improving deterministic finite automata

* New FE monitoring functionalities

— Rate Metering e
_ presented
— Scan detection next as

example

07 May 2009 PRISM First Review, Brussels

From counting to rate monitoring

* Counting Bloom filters with Count(x="131.175.21.1")
conservative update I

| |
- Very efficient (only min bin ++) T
‘|

* But...
_ ReqUIre a tlme WlndOW Count(x=n131175211u)

* too short < flows span over | |
* 100 long > memory consumptior 1]

\"4
NEEREAER
* Qur achievement: 2

— From count to rate Count(x="160.80.82.29")
measurement!

— Surprise: simpler than | l \lf
oxpected! T
|

28 Sept. 2009, Brussels Workshop on Future Internet Design

multiple windows

l
B

Approximate token bucket

* |dea: decrement all bins periodically
— Proof:. exact operation!

* Result:

— Bins decrement rate

* Threshold on average rate overflow
— Example: decrement window = 0,2 seconds - rate overflow when
long term rate is greater than 5p/second offered
— Bins size
* Threshold on peak rate

— Example: bins = 4 bits - overflow detected when 16 packets in a
window, 17 in two consecutive windows, 18 in three, etc. (detected
traffic envelope)

* Equivalent to token bucket with same rate and peak
parameters!
— But approximate operation
— False positive = counting errors (always in excess, though)

28 Sept. 2009, Brussels Workshop on Future Internet Design

10

Performance and efficiency

* With marginal memory deployed:
— Excellent measuring accuracy

— Guaranteed stable operation when
packets/window < array size / k

* But results show more than double sustained load
* Example
— 1 Gbps link, fully loaded with 500 byte packets at wire speed
— Target rate overflow detection = 2 Mbps - 1024 counters only!

1:1/200 - 1024 counters 1024 counters

* 40,0000 E—
Light flows

QT

Oy arn

20,0000 o
= cer

I

2 12 M 13 e IF 1s 1| 2

ets/window)

20,0000 flaws

AHUIL Dins average value

100000 <r real rate - with decrement

— detacted rate - with decremeant

g
L=
o
(=8
&

—
0
.
1
1
it
L&

e

& 9 10 11 12 13 14 15 18 17 18 19 20 2B T 384 52] 768 BOG
flows Packets window

28 Sept. 2009, Brussels Workshop on Future Internet Design 11

Detecting scans

* ARP scans
Host/Port scans
ICMP scans

* Patterns frequently
appearing in DDoS and as
preparation of attacks, ...

* Problem largely different
from that solved with BF
and CBF

* Ornot?

* Can we design a front-end
on the fly scan detector?

28 Sept. 2009, Brussels

... MACsrc=F1, targetIP=X1,...

... MACsrc=F1, targetiP=X2,...

... MACsrc=F1, targetlP=X3,...

... MACsrc=F1, targetiP=X4,...

.... targetlP=Xs5,...

F1 =5 “variations” - suspected scan
F2 =1 “variation”
F3 =1 “variation”

Workshop on Future Internet Design 12

Scan detect = count variations

_Jmacsre=F1,]] targetip=x1,.] 2
_fmacsrc=r1 |] targetip=x2,] [l ¢
Imacsro=r1,] | targetip=x3, | L
| macsre=r3 [Ttargetip=z,.. | JC

" wacsre=F3 [Jtargetip=z, .| I ¢
[{macsrc=F1,]] targetip=xs, | L ¢

| Jmacsre=F1]] targetip=x5,.] L/

28 Sept. 2009, Brussels Workshop on Future Internet Design

13

Variation detection: Coupled BFs

detecting

Detector Filter
[ISERS Learning Filter

iearming

i)
e
©
e
£
<
5)
c
Q
8
5}
8
1
-
o}
2]
)
=
]

150
seconds

28 Sept. 2009, Brussels Workshop on Future Internet Design

14

Variation Detector: HW impl.

* BF Implemented as a RAM

— Delay for filter reset (1 ram access every
CLK period)

* Three BFs

— “cleaning” filter needed
* (BF reset is slow > RAM)

* Three simple hash function

used (General hash function)

— RS hash (Robert Sedgwicks)
— JS hash (Justin Sobel)
— PJW hash (Peter J. Weinberger)

* CBF implementation ongoing

28 Sept. 2009, Brussels Workshop on Future Internet Design

15

HW Front-End for SNORT

* Content + Uricontent match

— String matching: Bloom filter or exact approach

* PRCE - DFA, NFA

— Fact: most rules use PCRE only after content/uricontent match

— Or only for very specific traffic (e.g., RPC) which can be detected
with other rules

* TCP/HTTP reassembly
— Appareltly THE major problem (HW would not scale)

* But fact 2: full reassembly NOT necessary!
— ad hoc solutions being considered (ACK or 3-way handshake reconstructions)

* And partial signature matching viable

—_— SNORT FE Legacy
HW SNORT

28 Sept. 2009, Brussels Workshop on Future Internet Design 16

HW approaches

* Bloom filter based:
— Memory efficient, but not really HW-amenable: BF in RAM

* Exact string matching

* An AND port for every content to match
* A flip-flop chain to keep trace of old byte in the packet

— not as inefficient as initially thought!
— ++: Support for more complex snort rules
— ++: Implementation easily extended to regular expression matching

E 9 9 %
= ..
R B

28 Sept. 2009, Brussels Workshop on Future Internet Design

17

Content match with modifiers

* Proposed approach (including registers and counters) support
rules with modifiers

— offset, depth, distance, within

content:"HTTP/1.1 200 OK"; - HW implem. (VHDL)
flenth:15;
copdentyalidex-of /2 within:200;) and

count_payload-register 99 1<=200

28 Sept. 2009, Brussels Workshop on Future Internet Design 18

Current Implementation

* NetFPGA (xilinx Virtex X2V50)

— 1 gbps link speed

content match without modifiers * content match with modifiers
— All content in the snort rule set (1) — 400 SNORT rules
— String truncated to 40 bytes — (we estimate 2000 rules capacity)

28 Sept. 2009, Brussels Workshop on Future Internet Design

19

With more performing COTS HW

» With up to date FPGA (e.g. Virtex V TXT):

— provides 30X logic resources
— achieve 600 MHz (4,8X) data processing
— Support for higher data rate (10 Gbps = 100)

* Parallelized version of our preliminary
prototype should process 2000 rules at

— 1Gbps X 4.8 (speed factor) X 30 (paral.
factor)= scaling to 144Gbps seems easy

28 Sept. 2009, Brussels Workshop on Future Internet Design

20

Conclusions

* Front-End analysis capabilities:
— Functionalities well beyond our initial expectation

» Application-matched FE processing

— Strong data reduction = scalability

— Matched data reduction = technical enforcement of
privacy’s necessity principle

* Privacy preservation

— Specific privacy preserving solutions addressed
* e.g. crypto
— But the aftermath is: privacy comes as “side effect”!

28 Sept. 2009, Brussels Workshop on Future Internet Design

21

Multi-layer compressed CBF

* Idea 1: Huffman-encode CBF 1001 [1]ofo{1][1[1]o]1]0]
1

— 0->0; 1210; 2->110; 3=->1110; ...

— Apparently not convenient, but... n

* Fact 2: Efficient “popcount”
operation native in NP or CPU

* Fact3: Lookup much more frequent
than insertions/deletions

* Idea: Multilayer structure

0
0

(@ 0]
1o [rlofolr[1]r]o]d]0]

28 Sept. 2009, Brussels Workshop on Future Internet Design

9

01110
011171
N -

22

ML-CCBF savings

BF size = 32768; # Hash = 10 (optimal at 2270 inserts)

20 - - - - & ML-CCBF
CBF

18+

g
g
o
3

1
2000 2000 4000 =0 Goo0
n

28 Sept. 2009, Brussels Workshop on Future Internet Design

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

