
1

Fast, Scalable and privacy-

preserving data processing for “on-

link” network monitoring: The PRISM 

approachGiuseppe Bianchi
CNIT / Roma Tor Vergata Unit - Italy
giuseppe.bianchi@uniroma2.it

28 Sept. 2009, Brussels Workshop on Future Internet Design



Why Privacy in Network Monitoring

28 Sept. 2009, Brussels Workshop on Future Internet Design 2

• Massive 
amount of data 
delivered
– Data mining
– Statistical 

analysis
– Behavioural 

profiling
– Data misuse

• Nothing in society poses as grave a threat to privacy as the Internet Service 
Provider (ISP). ISPs carry their users' conversations, secrets, relationships, 
acts, and omissions. Until the very recent past, they had left most of these 
alone because they had lacked the tools to spy invasively, but with recent 
advances in eavesdropping technology, they can now spy on people 
in unprecedented ways. Meanwhile, advertisers and copyright owners 
have been tempting them to put their users' secrets up for sale, and judging 
from a recent flurry of reports, ISPs are giving in to the temptation and 
experimenting with new forms of spying. This is only the leading edge of 
a coming storm of unprecedented and invasive ISP surveillance.

 Source: Paul Ohm, The Rise and Fall of Invasive ISP Surveillance, 
University of Illinois Law Review, 2009 

• Another privacy concern repeatedly mentioned to the European Commission 
these days is behavioural advertisement: systems that monitor internet 
users’ web browsing to better target them with advertisements. Now, 
European Privacy rules are crystal clear: a person’s information can 
only be used with their prior consent. And we cannot give up this 
basic principle, and have all our exchanges monitored, surveyed and 
stored, in exchange for a promise of “more relevant” advertisement! 
The Commission is closely monitoring the use of behavioural advertising to 
ensure respect for our privacy rights. I will not shy away from taking action 
where an EU country falls short of this duty.

 Source: Viviane Reding’s weekly videomessage theme: protecting 
privacy in the digital age, April 14, 2009



Two-tiered Approach

28 Sept. 2009, Brussels Workshop on Future Internet Design 3

PRIVACY
PRESERVING

CONTROLLER

Back-end Monitoring and Storage System

Front-end Traffic Probe

Front-end encryption

Internal 
Monitoring 
Applications

    Anonymisation &
embedded 

data processing
components

PUBLIC
DOMAIN

---------------------

THIRD PARTIES
---------------------

OUTSOURCED
MONITORING
APPLICATION

Front-end application 
support

IPFIX

IPFIX
XML

Semantic Access Control Middleware



The 4 PRISM research directions
• As much traffic analysis (and output 

filtering) as possible directly on the probe
– Obvious scalability & privacy gain

•  per flow encryption + escrow mechanisms
– Decrypt only “relevant” flows by expressing decrypt 

conditions in terms of monitoring events

• Privacy Preserving Access Control
–  Access only data types “permitted” for a specific 

monitoring task 

• Anonymization
28 Sept. 2009, Brussels Workshop on Future Internet Design 4



“matched monitoring” concept

28 Sept. 2009, Brussels Workshop on Future Internet Design 5

Front-end Traffic Probe

Back-end 
or

Monitoring
Application

Front-end 
application-specific 

processing & filtering

Trace storage

Back-end

Monitoring
Application

Back-end 
application-specific 

embedded processing

Analysis Functions

GOAL
Process & filter data 

so that only information
strictly necessary to the
monitoring application 

is delivered.

Output data & Protection mechanism tailored 
to monitoring application specific needs

 
Privacy-versus-utility-trade-off:  specific 

to the envisioned monitoring process

Technical enforcement of proportionality 
principle behind privacy preservation

 



PRISM achievements in FE processing

28 Sept. 2009, Brussels Workshop on Future Internet Design 6

• PRISM contribution: 
• Bloom-filter based approaches

• trade performance and scalability with (bounded) approximation
• Front End adaptation for variety of apps

• Including hardware Front-End pre-filter for SNORT

Front-end Traffic Probe

Front-end 
application-specific 

processing & filtering

o Question
o Which traffic analysis primitives, 

largely exploited as basic blocks 
in monitoring apps, can 
effectively be supported on front-
end filters?

o Constraint: stateless, on the fly, 
per packet processing



Background: Bloom filters
• Bloom Filters

– Probabilistic data structure for 
storing and checking set 
membership

– O(1) insert/lookup
– Trade memory for certainty

•  memory << list 
– n x sizeof(element)

• May provide WRONG response
– False positive probability 

• Counting Bloom Filters (CBFs)
– Allow element deletion

• CBFs with conservative update
– Permit extremely efficient 

counting and accounting (Estan, 
Varghese 2002) 

0 0 1 0 0 0 0 1 0 0 10 0 0Bit Array
[1:m]

H1(x) H2(x) H3(x)

11

H1(y) H3(y) H2(y)

Bit array  Counters array

Increment only smaller bin

07 May 2009 7PRISM First Review, Brussels



PRISM FE monitoring advances

• New, more efficient, data structures
– Multi-layer compressed counting Bloom filters
– Blooming trees & optimised blooming trees
– Improving deterministic finite automata

• New FE monitoring functionalities
– Rate Metering
– Scan detection

07 May 2009 8PRISM First Review, Brussels

Very briefly 
presented 

next as 
example



28 Sept. 2009, Brussels Workshop on Future Internet Design 9

• Counting Bloom filters with 
conservative update
– Very efficient (only min bin ++)

• But…
– Require a time window

• too short  flows span over 
multiple windows

• too long  memory consumption

• Our achievement:
– From count to rate 

measurement!
– Surprise: simpler than 

expected!

0 0 1 0 0 0 0 1 0 0 10 0 0Bin Array
[1:m]

H1(x) H2(x) H3(x)

00

11

0 0 2 0 0 0 0 2 0 0 20 0 0

H1(x) H2(x) H3(x)

00

22

0 0 2 0 0 0 0 2 0 0 20 0 0

H1(x) H2(x) H3(x)

10

11

From counting to rate monitoring



28 Sept. 2009, Brussels Workshop on Future Internet Design 10

Approximate token bucket
• Idea: decrement all bins periodically

– Proof: exact operation! 
• Result:

– Bins decrement rate 
• Threshold on average rate overflow

– Example: decrement window = 0,2 seconds  rate overflow when 
long term rate is greater than 5p/second offered

– Bins size
• Threshold on peak rate

– Example: bins = 4 bits  overflow detected when 16 packets in a 
window, 17 in two consecutive windows, 18 in three, etc. (detected 
traffic envelope)

• Equivalent to token bucket with same rate and peak 
parameters!

– But approximate operation
– False positive  counting errors (always in excess, though)



28 Sept. 2009, Brussels Workshop on Future Internet Design 11

Performance and efficiency
• With marginal memory deployed:

– Excellent measuring accuracy
– Guaranteed stable operation when

# packets/window < array size / k
• But results show more than double sustained load

• Example
– 1 Gbps link, fully loaded with 500 byte packets at wire speed
– Target rate overflow detection = 2 Mbps  1024 counters only! 



28 Sept. 2009, Brussels Workshop on Future Internet Design 12

Detecting scans
• ARP scans

Host/Port scans
ICMP scans
…

• Patterns frequently 
appearing in DDoS and as 
preparation of attacks, …

• Problem largely different 
from that solved with BF 
and CBF

• Or not?
• Can we design a front-end 

on the fly scan detector?

… MACsrc=F1, …. targetIP=X1,…

… MACsrc=F2, …. targetIP=Y,…

… MACsrc=F1, …. targetIP=X2,…

… MACsrc=F2, …. targetIP=Y,…

… MACsrc=F1, …. targetIP=X3,…

… MACsrc=F3, …. targetIP=Z,…

… MACsrc=F3, …. targetIP=Z,…
… MACsrc=F1, …. targetIP=X4,…

… MACsrc=F2, …. targetIP=Y,…

… MACsrc=F2, …. targetIP=Y,…

… MACsrc=F1, …. targetIP=X5,…

F1 = 5 “variations”   suspected scan
F2 = 1 “variation”
F3 = 1 “variation”



28 Sept. 2009, Brussels Workshop on Future Internet Design 13

Scan detect = count variations

… MACsrc=F1, …. targetIP=X1,…

… MACsrc=F2, …. targetIP=Y,…

… MACsrc=F1, …. targetIP=X2,…

… MACsrc=F2, …. targetIP=Y,…

… MACsrc=F1, …. targetIP=X3,…

… MACsrc=F3, …. targetIP=Z,…

… MACsrc=F3, …. targetIP=Z,…
… MACsrc=F1, …. targetIP=X4,…

… MACsrc=F2, …. targetIP=Y,…

… MACsrc=F2, …. targetIP=Y,…

… MACsrc=F1, …. targetIP=X5,…

Flow key Feature
Variation
Detector

Variation
Monitor

F1

F3

F2

BF (in transient state) CBF/rate meas

(F1,X1)
(F2,Y)
(F1,X2)
(F2,Y)
(F1,X3)
(F3,Z)
(F3,Z)
(F1,X4)
(F2,Y)
(F2,Y)
(F1,X5)

Flow-feature
pair



28 Sept. 2009, Brussels Workshop on Future Internet Design 14

Variation detection: Coupled BFs

FILTER 1FILTER 1

FILTER 2FILTER 2

detectingdetecting

learninglearning

2
)2/(0

mnB =

Filter switching rule (static): 
When # learning zeros drops to:

Adaptive improvement:

)(
2/)()1(
tD

mtTtT =+



Variation Detector: HW impl. 

28 Sept. 2009, Brussels Workshop on Future Internet Design 15

• BF Implemented as a RAM
– Delay for filter reset (1 ram access every 

CLK period)
• Three BFs

– “cleaning” filter needed 
• (BF reset is slow  RAM)

• Three simple hash function 
used (General hash function)
– RS hash (Robert Sedgwicks)
– JS hash (Justin Sobel)
– PJW hash (Peter J. Weinberger)

• CBF implementation ongoing



HW Front-End for SNORT
• Content + Uricontent match

– String matching: Bloom filter or exact approach

• PRCE  DFA, NFA
– Fact: most rules use PCRE only after content/uricontent match
– Or only for very specific traffic (e.g., RPC) which can be detected 

with other rules

• TCP/HTTP reassembly
– Appareltly THE major problem (HW would not scale)

• But fact 2: full reassembly NOT necessary! 
– ad hoc solutions being considered (ACK or  3-way handshake reconstructions) 

• And partial signature matching viable

28 Sept. 2009, Brussels Workshop on Future Internet Design 16

SNORT FE
HW

Legacy 
SNORT

From Wire
Filtered & scaled traffic
False positive acceptable



HW approaches
• Bloom filter based: 

– Memory efficient, but not really HW-amenable: BF in RAM

• Exact string matching
• An AND port for every content to match
• A flip-flop chain to keep trace of old byte in the packet

– not as inefficient as initially thought!
– ++: Support for more complex snort rules 
– ++: Implementation easily extended to regular expression matching

28 Sept. 2009, Brussels Workshop on Future Internet Design 17

=a?

=b?

=c?

cba

cbc

c

0

0

1

0

0

1

b

0

1

0

0

1

0c c
=a?

=b?

=c?

cba

cbc1

0



Content match with modifiers
• Proposed approach (including registers and counters) support 

rules with modifiers 
– offset, depth, distance, within

28 Sept. 2009, Brussels Workshop on Future Internet Design 18

 content:"HTTP/1.1 200 OK"; 
depth:15;
 content:"Index of /”; within:200;) 

 HW implem. (VHDL) 
Rule #1:

if (count_payload<=15 and decodifica(14)(72)='1' and decodifica(13)(84)='1' and 
decodifica(12)(84)='1' and decodifica(11)(80)='1' and (codifica(10)=x”2F") and 
decodifica(9)(49)='1' and (codifica(8)=x”2E") and decodifica(7)(49)='1' and 
(codifica(6)=x”20") and decodifica(5)(50)='1' and decodifica(4)(48)='1' and 
decodifica(3)(48)='1' and (codifica(2)=x”20") and decodifica(1)(79)='1' and 
decodifica(0)(75)='1') then
stringa_trovata(99)(1)<='1';
register_99_1<=count_payload;
end if;

Rule #2:
if (count_payload-register_99_1<=200 and stringa_trovata(99)(1)='1' and decodifica(9)
(73)='1' and decodifica(8)(110)='1' and decodifica(7)(100)='1' and decodifica(6)
(101)='1' and decodifica(5)(120)='1' and (codifica(4)=x”20") and decodifica(3)(111)='1' 
and decodifica(2)(102)='1' and (codifica(1)=x”20") and (codifica(0)=x”2F")) then
trovata<='1';
end if;



Current Implementation
• NetFPGA (xilinx Virtex X2V50)

– 1 gbps link speed

28 Sept. 2009, Brussels Workshop on Future Internet Design 19

Logic 
utilization

used available utiliz.

Number of 
slices

10059 23616 42%

Number of 
slice Flip 
Flops

5369 47232 11%

Number of 
4 input 
LUTs

16713 47232 35%

Logic 
utilization

use
d

available utiliz.

Number of 
slices

378
7

23616 16%

Number of 
slice Flip 
Flops

337
5

47232 7%

Number of 
4 input 
LUTs

513
1

47232 10%

• content match without modifiers
– All content in the snort rule set (!)
– String truncated to 40 bytes

• content match with modifiers
– 400 SNORT rules
– (we estimate 2000 rules capacity)



With more performing COTS HW

• With up to date FPGA (e.g. Virtex V TXT):
– provides 30X logic resources
– achieve 600 MHz (4,8X) data processing
– Support for higher data rate (10 Gbps  100) 

• Parallelized version of our preliminary 
prototype should process 2000 rules at
– 1Gbps X 4.8 (speed factor) X 30 (paral. 

factor)= scaling to 144Gbps seems easy

28 Sept. 2009, Brussels Workshop on Future Internet Design 20



Conclusions

28 Sept. 2009, Brussels Workshop on Future Internet Design 21



Multi-layer compressed CBF

28 Sept. 2009, Brussels Workshop on Future Internet Design 22

• Idea 1: Huffman-encode CBF
– 00; 110; 2110; 31110; …
– Apparently not convenient, but…

• Fact 2: Efficient “popcount” 
operation native in NP or CPU

• Fact3: Lookup much more frequent 
than insertions/deletions

• Idea: Multilayer structure

1 0 1 1 0 0 1 1 1 0 1 0

1 2 0 3 1

1 1 0 1 1
0

1

1

0

1 0

0

1

1

1

0

1

0 1 1 1

0 1 0

0

1 0 1 1 0 1 1 1 00 1 0

Lookup example: 
h(x) = 3
popcount(110) = 2
popcount(10)=1
popcount(0)=0
counter=1110=3

BF!

Huffman-CBF

CBF



ML-CCBF savings

28 Sept. 2009, Brussels Workshop on Future Internet Design 23

BF size = 32768; # Hash = 10 (optimal at 2270 inserts)


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

