
AN FPGA BASED ARCHITECTURE FOR COMPLEX RULE MATCHING WITH STATEFUL
INSPECTION OF MULTIPLE TCP CONNECTIONS

Claudio Greco, Enrico Nobile, Salvatore Pontarelli, Simone Teofili

CNIT/University of Rome ”Tor Vergata”,
Via del Politecnico 1, 00191, Rome, ITALY

email: claudiogre@gmail.com, enrico n@hotmail.com,
simone.teofili@uniroma2.it, salvatore.pontarelli@uniroma2.it

ABSTRACT

In this paper a novel architecture for string matching is pre-
sented. It is oriented to an FPGA implementation and, dif-
ferently from other similar works, it is particularly suitable
for rules matching in multiple streams. The paper presents
our developed architecture able to efficiently manage dif-
ferent streams, discusses how to optimize the design to limit
the number of FPGA logic resources and shows the obtained
results.

1. INTRODUCTION

The continuous increasing of network speed and its diffu-
sion in all the aspects of our life is constantly accompanied
by an increasing request of network security. One of the
most used solutions for protecting networks is based on the
use of Network Intrusion Detection Systems (NIDS) such as
Snort [1].

An IDS should perform several tasks to completely an-
alyze the traffic crossing the network, reassembling TCP
flows, collecting several statistics, classifying packets ac-
cording to header or content matching, comparing the pay-
load with content-matching rules. Two tasks can be consid-
ered of fundamental importance:

1. stream preprocessing: The TCP/UDP packets com-
ing from the same connection are reassembled to pro-
vide to the the rule matching module an ordered data
stream, allowing the analysis of the streams as an en-
tire data flow, not packet by packet.

2. rule matching on a reordered stream: the stream is in-
spected in order to check if any of the IDS rules is
matched. The identification of a malicious flow re-
quires not only the matching of a particular string,
but the subsequent identification of one of more sus-
picious contents (e.g. strings, bytes, regular expres-

This work has been partially supported by the European Commission
in the frame of the Project FP7-ICT PRISM, contract number 215350.

sions), placed in specific positions inside the data flow,
that can be located in different packets.

IDS are usually software based and are used in little net-
works, far from the backbones links. In fact, due to the large
amount of data that must be analyzed by a NIDS, the soft-
ware implementation of a NIDS cannot sustain a traffic rate
comparable with the rates available on a backbone. There-
fore a lot of effort has been spent in the last years to imple-
ment NIDS in hardware, increasing their processing capabil-
ities. The processing data rate of the last generation FPGA
totally fulfills the data rate requested by the NIDS, while the
reconfigurability of FPGA allows modifying the inspected
rule set upgrading the bitstream of the FPGA. In fact, the set
of rules that an IDS has to analyze can rapidly change, de-
pending on the discovery of new viruses or new other types
of attacks. In this paper we propose an novel approach that
exploit the characteristic of FPGA to efficiently manage the
context state swapping. To improve the efficiency of the
context state swapping we propose to store in an external
RAM only the state of the less active flows. Instead, the
most used flows are managed internally by the FPGA using
the architecture described in Section V. The remainder of
the paper is organized as follows: in Section 2, we discuss
previous works on hardware rule matching. In Section 3 the
key concept is presented, while in Section 4 we present the
implementation of rule matching engine for single stream.
In Section 5, we extend the strung matching engine to mul-
tiple flows. Section 6 presents the implementation results
and finally, Section 7 concludes the paper.

2. RELATED WORKS

Several studies report hardware implementations of pattern
matching engines. Pattern matching can be performed im-
plementing in hardware different algorithms used by soft-
ware version of IDSs like Aho-Corasik[17] [14], or Wu-
Manber[3]. Moscola [5] proposed a Deterministic Finite
Automata(DFA), supporting multi bytes comparisons and

partial matches. Sidhu and Prasanna[13] mapped a Non-
deterministic Finite Automata (NFA) on an FPGA. The use
of Bloom Filters [15] leads, if the system can support false
positives, to fast and area-saving implementations [19] [16].
Tools for organizing patterns in tries, taking advantage of
some prefix sharing rule and thus saving FPGA’s area[4][18],
have been proposed too. Some works used memories like
SRAM, Ram blocks or CAM[6][8], that offer great space for
a large number of patterns but that may reduce considerably
the speed rate. Other configurations use hybrid hardware-
software architectures, exploiting the hardware speed only
for partial/approximate string matching[19] and addressing
a small portion of traffic to software for further analysis[3].
Moreover an hybrid approach can lead to more complex ar-
chitectures that may be quickly reconfigured or that can take
different actions based on the results of pattern matching[7].
All these works are focused on a single data flow. The actual
use of all these systems in a network environment requires
the inspected flows to be previously reassembled and sent
one at a time to the IDS.

3. KEY CONCEPT

Fig. 1. Basic implementation of a multi-string matching
block

Every clock cycle one byte of the packet enters the De-
coder and Delay chain as shown in fig. 1. This block pro-
vides the inputs to the content matching blocks. These blocks
perform the matching of the contents contained in the IDS
rules. The results obtained by the content matching blocks
are stored in the state tracker block. This block reveals when
a full rule is matched. ONLY IF the logical AND between
the content matching block (asserting that a content of a
specific rule is matched) and the state tracker block out-
puts (asserting that the other contents of the same rule are
matched) is set, THEN we are able to say that the whole
rule is matched. In the rest of this paper we will assume that
a TCP-Stream Reassembly provides to our framework or-
dered packets, taking care of all the problems linked to out of
sequence and/or overlapping packets. In literature different
works that realize an TCP reassembly modules over FPGA

are present. Necker [10] proposed an hardware implemen-
tation of TCP reassembly and state tracking able to face at
most 30 flows. Li [9] implemented a system that reassem-
bles 40 TCP connections using Dual port Ram, reaching up
to 2.7Gbps. Finally, note that the need for TCP-Stream Re-
assembly is a quite restrictive requirement for our architec-
ture. In fact, our framework is able to properly performs
the packet inspection when the packets belonging to a flow
are reordered. The difference between reassembling and re-
ordering is that, in the first case, the former requires to re-
ceive always a certain amount of IP packets in order to form
an upper layer data frame (TCP/UDP) before sending it to
the rule matching engine, while the latter is able to deliver
a packet immediately as soon as the consecutive one is re-
ceived. This means that the amount of memory required by
the reassembler is always greater than the one required for
reordering.

4. FPGA IMPLEMENTATION OF RULE
MATCHING ENGINE FOR SINGLE STREAM

We present two implementation of the rule matching en-
gine, very similar to the ones discussed in [20]. In the first
one, presented in Fig. 2, the input byte enters in a flip-flop
chain. The longest content that has to be matched provides
the maximum length of the flip-flop chain. In this way the
last M entered byte are stored in the flip-flop chain and can
be evaluated in parallel. The evaluation is performed by the
combinatorial network (shown in the dashed box of Fig. 2).
For each content the combinatorial network check if each
single character correspond to the expected one and perform
the logical AND of all the founded characters.

With respect to [20], we extend the content matching
framework to a complex rule matching infrastructure, able
to handle multiple contents and rule modifiers. It is, in fact,
sufficient to add a global counter, whose task is to count the
byte of the analyzed packet, and local registers to store the
content of the global counter when the content of a specific
rule is found. Moreover one or more flip-flops keep trace
of the previously matched contents that compose a complex
rule. These flip-flops and registers form the state tracker
block of Fig. 2. Suppose that we are interested in match-
ing the content def , we have to check if the third character
is equal to ′d′, and the second is equal to ′e′ and the first
is equal to ′f ′. Assume that we are interested in matching
a rule saying that the content def is placed 20 bytes after
the content abc. When the content def has been found, the
flip-flop that keeps trace of this event is triggered and the
value of the global counter is stored in one of the local reg-
isters. The matching of the above mentioned entire rule is
obtained as a logical AND of the output of the matching
framework asserting that the string def is found, together
with a circuit that verifies the distance between the two con-

Fig. 2. Basic implementation of a multi-string matching block

Fig. 3. Implementation of a multi-string matching block with decoded input delay chain

tents and the flip-flop output keeping trace of the matched
abc content. The verification of the distance between the
two contents is performed with a subtractor operating over
the global counter and the local register.

The second architecture differs from the previous one
because it shares part of the combinatorial network in order
to decrease the resources occupation. The reader can see
from Fig. 2 that is possible that the equal operation is per-
formed for each character of each content. When the number
of content grows, the number of these comparisons grows
too. Therefore it is possible to share resources to perform
these comparisons by using a decoding block as presented
in Fig. 3. One byte every clock period is entered a decoding
block, (see Fig. 3), triggering the flip-flop chain that keeps
trace of the correspondence of the entered byte with one of
the 256 possible ASCII symbols. In order to match a single
string with this architecture it is sufficient to logically AND
all the outputs of the flip-flop chains (that track the pres-

ence of the symbols composing the content to match) in the
desired order. Suppose that we want to match the content
EDD, we have to logically AND the output of the third and
the second flip-flop in chain that track the symbol D and the
first flip-flop of the chain that keeps trace of the symbol E.
In Section VI we will show that this architecture use a huge
number of flip-flops with respect to the previous one, but
allows an important saving in terms of LUTs occupation.

5. EXTENSION OF RULE MATCHING ENGINE TO
MULTIPLE STREAM

The architectures presented in previous section performs rule
matching, one flow once at a time. In a real network envi-
ronment, however, a rule matching engine should cope with
a sequence of packets belonging to different data streams.
Each time a new packet arrives, the engine should check
which data stream the packet belongs to, in order to perform

the analysis of the right stream, taking into account the state
tracker related to the selected flow. Basically the state of
a flow is composed by the last characters inside the delay
chain and the matching context state of the rule. If a ma-
licious content abcd is split in two packets the end of the
first packet contains ab, while the beginning of the second
packet contains cd. To detect the whole abcd content, even
if packets of a different stream are inserted between these
two packets, the characters yet present in the delay chain at
the end of a packet must be stored. Moreover, the storage
elements of the state tracker must take into account if other
contents of the same rule has been matched and the registers
used to check the distance between different matches. The
method we propose to store these information is composed
of two parts:

1. the storage elements of the architecture presented in
Fig. 2, i.e. the flip-flops of the delay chain and the
registers of the state tracker, are substituted by the
multi-input memory element depicted in Fig. 4.

2. a ”Least Recently Used” policy is implemented in or-
der to decide a correspondence between the active data
flows and the multi-input rule matching engine.

Fig. 4. Implementation of multi-input for the encoded input
delay chain

The Stream selector’s signal selects one of the flip-flop
outputs as the output of the multi-input delay element. In-
stead, at each clock cycle only one of the 16 Flip-flop is
enabled to latch the input coming from the previous stage.
The behavior of this structure in totally equivalent to chain
of 16X8 RAMs in which the stream selector signal works
as the address for the 16X8 RAM. The motivation for using
this structure is strictly related to the FPGA organization. In
fact, the LUTs of the modern FPGAs can be configured as
16X1 RAMs. Therefore a structure like the one presented
in Fig. 4 requires only 8 LUTs for each stage. In Section
6 we will show the impact of this choice in terms of FPGA
resources occupation. The structure of Fig. 4 allows swap-
ping between one of 16 different flows in one clock cycle.

In fact, the four signals composing the stream selector bus
allow swapping between 16 different content. Suppose the
previous situation in which the content abcd is split in two
packets of a data stream. When the first packet goes into the
rule matching engine one of the 16 lines is reserved to the
data stream this packet belongs to. When this packet ends,
and a new packet belonging to a different stream arrives,
the stream selector bus is changed. In this way the overall
status of the previous stream is frozen until the occurrence
of another packet belonging to the same previous stream.
To manage more than 16 streams we have to use additional
memory for storing the state of active data flows. The use of
additional memory requires to extract the information stored
inside the delay chain and the data stored in the state tracker
block. Because the length of the chain is more than 100
characters and the state tracker must take into account the
trace of thousands of rules, the overall amount of data that
has to be transferred (each time the additional memory is
used) is in the order of magnitude of several thousands. Sup-
posing a 64 data width memory, the transfers would require
tens of clock cycles. During the transfers the rule matching
engine is unable to perform its normal operation, therefore
each access to the external memory corresponds to waste of
computational time and to decrease of the engine through-
put. Obviously, also the engine state restoring operation re-
quires access to the external memory and so implies further
time loss. The discussed one is very similar to the behavior
of computers with multitasking operating systems, in which
the CPU registers, representing the machine state, are stored
and restored to an external memory at each context swap-
ping. Following the computer analogy, the most frequently
used data are usually stored in a cache, in order to minimize
the accesses to the external memory. A similar approach is
necessary to decide which of the various input streams must
be placed into one of the 16 lines of the rule matching en-
gine, and which of them must be stored in the additional
memory. We propose to use a ”Least Recently Used” al-
gorithm to select which is the stream to be offloaded when
a packet of a new stream arrives. For each line we use a
counter that increments each time a new packet arrives. If
the packet belongs to a stream already present in any line of
the engine, the corresponding counter is reset, instead if the
packet belongs to a stream not yet present in the engine the
stream with the higher counter is offloaded. In this way in
the engine always stores the most frequently active streams,
minimizing the additional memory access. An additional
flag for each engine line is used to signal if a stream keeps
the line busy. With the end of a stream this flag is reset
so that, when a new stream arrives and there is a free line,
that line is reserved to the newly arrived stream and the flag
is set again. The use of additional memory for storing in-
formations related to different streams is mandatory if we
want to cope with rule matching analysis involving differ-

ent stream transmitted in more than a packet. The combined
use of multi-stream delay elements and additional memory
management with LRU policy reduces the time loss. The
number of parallel managed streams can be increased plac-
ing different chains in parallel at the cost of increasing the
FPGA resources occupation. Moreover, the use of Virtex
V FPGAs that holds 6-inputs LUTs as basic logic element
allows using 64 parallel streams.

6. IMPLEMENTATION RESULTS

Table 1. Synthesis results for the different implementations
of single stream engine - Virtex II

200 400 800
rules rules rules

of Flip Flops 508 1063 1302
Basic # of LUTs 1676 4301 6506

(Fig. 2) # of Slices 908 2315 3459
(utilization [%]) (3%) (9%) (14%)

With # of Flip Flops 1749 4371 4726
decoder # of LUTs 783 1780 3419

stage # of Slices 769 1847 2618
(Fig. 3) (utilization [%]) (3%) (7%) (11%)

of Flip Flops 1656 4073 4361
Hybrid # of LUTs 821 2255 4059

of Slices 793 1943 2740
(utilization [%]) (3%) (8%) (11%)

Our rule matching engine has been implemented by us-
ing the Xilinx Virtex II Pro XC2V50 FPGA and the Xilinx
Virtex V XC5VLX110T FPGAs. All the synthesis has been
carried out using the Xilinx XST software [22], imposing a
maximum frequency of 125 Mhz as time constraint. This
constraint allows sustaining a 1Gbps traffic analysis. The
single stream engines, as described in Section 4 has been
synthesized for three sets of rules, corresponding to 200, 400
and 800 http rules extracted from the Snort ruleset. For each
set of rule we implement three different architectures: one
described in Fig. 2, one described in Fig. 3 and an hybrid
one. The hybrid architecture uses a partial decoder stage
(see Fig. 3) in which only the most frequent characters are
decoded. For our purpose we decode only the ASCII codes
corresponding to alphanumeric characters. The results for
the three architectures are reported in Table 1. The results
presented confirm the analysis discussed in Sections 4 and
5. The basic architecture, without decoded stage, requires
the highest number of LUTs and the lowest number of Flip-
Flop. Instead, the sharing of the decoding operation per-
formed in the architecture of Fig. 3 allows savings around
50% of used LUT, but with an high cost in terms of Flip-
Flops. The hybrid architecture is in the middle between the
other two. It requires less Flip-Flop than the second archi-
tecture, keeping a saving in terms of LUTs with respect to

Table 2. Synthesis results for the basic implementation (Fig.
2) of the 16 stream engine- Virtex II

200 rules 400 rules 800 rules
of Flip Flops 79 102 239
of LUTs used 1449 3379 5925

as logic
of RAM16X8 37 72 88
of LUTs used 304 576 704

as RAM
of Slices 914 2054 3439

(utilization [%]) (3,8%) (8,7%) (14,5%)

Table 3. Synthesis results comparison: single stream engine
vs. 64 streams engine - Virtex V

200 400 800
rules rules rules

Single Stream
of Flip Flops 1566 3630 3914

of LUTs used as logic 430 1054 2196
of LUT Flip Flop pairs 1010 2428 4002

(utilization [%]) (1,4%) (3,5%) (5,7%)
Multiple Stream

of Flip Flops 79 100 246
of LUTs used as logic 968 2258 3733
of LUT Flip Flop pairs 1294 2879 4527

(utilization [%]) (1,8%) (4,1%) (6,5%)

the first architecture. In the single stream rule matching ar-
chitectures our target is the minimization of the Slices, and
therefore the second and the third architectures are the right
choices. Instead, if we want to implement the rule match-
ing engine for multiple streams we need to minimize the
number of flip-flops and therefore the basic architecture is
the most suitable choice. We present in Table 2 results ob-
tained implementing the same rule sets for a 16 concurrent
streams rule matching engine. The table shows an overhead
that is around only the 30-40% of the resource of the better
single stream implementation (the one of Fig. 3). This is
due to the massive use of 4-inputs LUTs of the Xilinx Vir-
tex II-Pro as 16X1 RAMs. The number of LUTs composing
the combinatorial network is quite similar to the one of the
single stream matching engine, as expected. The number
of 16X1 RAM block is fixed by the longest content under
analysis length, that in our rule sets are 37, 72, and 88, re-
spectively for the 200, 400 and 800 rule sets. Now, we re-
port the results obtained from synthesis on the Xilinx Virtex
V XC5VLX110T device. This FPGA uses 6-inputs LUTs,
therefore a 64 concurrent stream implementation is a natural
choice. We synthesize the single stream architectures with
initial decoder stage (Fig. 3) and we compare this architec-

ture with the implementation of the 64 concurrent streams
rule matching: the data are reported in in Table 3. Simi-
larly to the Virtex II case, the number of 64X1 RAM block
is fixed by the longest content length under analysis, as ex-
pected. The 64 streams engine has an overhead between
10% and 20% with respect to the best implementation of the
single stream engine. In this case is even more evident that
the extension to multiple stream functionalities by using the
Virtex V FPGA has a low cost with respect to the resource
occupation of the overall system.

7. CONCLUSIONS

This paper discusses how to extend an FPGA based rule
matching engine to a multi-flow content. The architectural
modifications and the collateral schedule method proposed
allow the inspection on multiple streams delivered in the
same network. Our architecture can switch from the analy-
sis of a stream to another one without time loss. Instead, the
LRU based policy minimize the use of external memories
needed to store and restore the state of partially inspected
flows that exceed the 16 (or 64) concurrent streams. Differ-
ent rule matching engine architectures have been presented
and discussed, in order to identify the right choice to min-
imize the FPGA resources occupation. In particular, with
reference to the Virtex V implementation, the synthesis re-
sults show that the extension to a 64 stream engine has a
very limited cost in terms of resources occupation.

8. REFERENCES

[1] Sourcefire, “Snort: The Open Source Network Intrusion De-
tection System” http://www.snort.org, 2003.

[2] M. Almgren, E. Jonsson, and U. Lindqvist, ”A Comparison of
Alternative Audit Sources for Web Server Attack Detection”, in
Proceedings of the 12th Nordic Workshop on Secure IT Systems
(NordSec 2007), Reykjavik University, Oct. 11-12, 2007

[3] R. Proudfoot, K. Kent, E. Aubanel, N. Chen, ”Flexible
Software-Hardware Network Intrusion Detection System,” The
19th IEEE/IFIP International Symposium on Rapid System Pro-
totyping, RSP08, pp.182-188, 2008

[4] Z. K. Baker, V. K. Prasanna, ”Automatic Synthesis of Efficient
Intrusion Detection Systems on FPGAs,” IEEE Trans. on Dep.
and Sec. Comp., vol. 3, no. 4, pp. 289-300, Oct.-Dec. 2006

[5] J. Moscola, J. Lockwood, R.P. Loui, and M. Pachos, “Imple-
mentation of a Content-Scanning Module for an Internet Fire-
wall,” Proc. 11th Ann. IEEE Symp. Field-Programmable Cus-
tom Computing Machines (FCCM ’03), pp. 31-38, 2003.

[6] M. Gokhale, D. Dubois, A. Dubois, M. Boorman, S. Poole,
and V. Hogsett, “Granidt: Towards Gigabit Rate Network In-
trusion Detection,” Proc. 13th Ann. ACM/SIGDA Int’l Conf.
Field-Programmable Logic and Applications (FPL ’03), pp.
404-413, 2003

[7] I. Sourdis, V. Dimopoulos, D. Pnevmatikatos and S. Vassil-
iadis, ”Packet Pre-filtering for Network Intrusion Detection”, in
2nd ACM/IEEE Symposium on Architectures for Networking
and Communications Systems (ANCS), pp. 183-192, San Jose,
CA, USA, December 2006.

[8] I. Sourdis and D. Pnevmatikatos, “Pre-decoded CAMs for Ef-
ficient and High-Speed NIDS Pattern Matching,” in IEEE Sym-
posium on Field-Programmable Custom Computing Machines.
Napa Valley, CA, April 2004

[9] S. Li, J. Torresen and O. Soraasen, ”Improving a Network Se-
curity System by Reconfigurable Hardware”, In proc. of 22nd
Norchip Conference, November 2004, Oslo, Norway.

[10] M. Necker, D. Contis, David Schimmel, ”TCP-Stream Re-
assembly and State Tracking in Hardware”, Proc. of the 10th
Annual IEEE Symposium on Field-Programmable Custom
Computing Machines (FCCM’02)

[11] A. K. Tummala, P. Patel, ”Distributed IDS using Reconfig-
urable Hardware,” IPDPS, pp.426, 2007 IEEE International Par-
allel and Distributed Processing Symposium, 2007

[12] C. Dan Lo, Y. Tai, K. Psarris, and W. Hwang, ”Super Fast
Hardware String Matching,” 2006 IEEE International Confer-
ence on Field Programmable Technology, Dec. 2006.

[13] R. Sidhu and V.K. Prasanna, “Fast Regular Expression
Matching Using FPGAs,” Proc. Ninth IEEE Symp. Field-
Programmable Custom Computing Machines (FCCM), 2001

[14] Y. Liu, D. Xu, D. Liu, L. Sun “A Fast and Configurable Pat-
tern Matching Hardware Architecture for Intrusion Detection”.
WKDD 2009: 614-618

[15] B. Bloom, ”Space/time trade-offs in hash coding with allow-
able errors”, ACM, 13(7):422-426, May 1970

[16] S. Dharmapurikar, P. Krishnamurthy, T. S. Sproull, J. W.
Lockwood, ”Deep Packet Inspection using Parallel Bloom Fil-
ters,” IEEE Micro, vol. 24, no. 1, pp. 52-61, Jan./Feb. 2004,

[17] A.V. Aho, M.J. Corasick,”Efficient String Matching: An Aid
to Bibliographic Search”, Communications of ACM: June 1975
Vol. 18 n. 6

[18] Y. H. Cho, S. Navab, and W. H. Mangione-Smith, “Spe-
cialized Hardware for Deep Network Packet Filtering,” in 12th
Conference on Field Programmable Logic and Applications.
Montpellier, France: Springer-Verlag, Sept. 2002, pp. 452 461

[19] Yoshioka, A. Shaikot, Min Sik Kim, ”Rule Hashing for Ef-
ficient Packet Classification in Network Intrusion Detection”,
Proceedings of 17th International Conference on Computer
Communications and Networks, 2008. ICCCN ’08.

[20] I. Sourdis, D. N. Pnevmatikatos, S. Vassiliadis, ”Scalable
Multigigabit Pattern Matching for Packet Inspection”, IEEE
Trans. VLSI Syst. 16(2): 156-166 (2008)

[21] R. Smith, C. Estan, S. Jha, ”XFA: Faster signature match-
ing with extended automata”, IEEE Symposium on Security and
Privacy (Oakland), May 2008

[22] XST User Guide, available at http://toolbox.xilinx.com/ doc-
san/xilinx5/pdf/docs/xst/xst.pdf

