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Terminology

Below is a list of frequently used terms together with a brief explanation.

actor  Human being running a traffic monitoring application.
analysis Set of functions which process  packet data into some result.

Composed of one or more analysis functions, which are split
between the front-end and back-end.

back-end analysis
function

Function carried out at the back -end which takes as input some
intermediate or final analysis result, as output by a front -end
function or from the database, and returns some final analysis
result, for later post-processing for presentation, export, or alert -
generation purposes. A back-end analysis function is driven by
the semantic access control system on the back -end.

front-end analysis
function

Function which takes as input packet data and produces as
output some intermediate or final analysis result; the output
should be protected as necessary to meet the privacy
requirements. A front-end analysis function may maintain
internal state in order to derive its output from multiple packets.
A front-end analysis function is driven largely by arriving
packets, but may be driven by other events (e.g. link state
changes on the front end or configuration) or by a timer (e.g., a
periodic state clean up).

monitoring
application

Software application or software agent that is used by an actor
to submit a request to the back -end, and which also fetches the
result.

monitoring
application
execution

The lifecycle of an application’s execution; it may includ e
several requests (e.g., an IDS application runs non -stop
(execution); when triggered by an event, it submits requests).
See also “request”, below.

purpose Purpose that a given monitoring application serves.
request (by a
monitoring
application to the
back-end)

Autonomous, transactional request submitted by a monitoring
application to the back-end; a monitoring application execution
may include multiple requests.

requesting entity The {actor, monitoring application} pair that submits a request,
i.e., requesting entity  actors  monitoring applications.

role Role that is assigned to an actor (e.g., network administrator) or
to a set of actors (e.g., if we define the role executive, the board
of executives constitutes another role that can be assigned to  the
logical/virtual actor comprised of all the executives)

service Kind of abstraction for a monitoring application and/or purpose
served; for example, PasTMon is a performance monitoring
application, while the “measurement of SLA performance” is a
service.
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1 Introduction
The goal of the PRISM project is to design a general -purpose network traffic monitoring
framework that enforces strong protection of personal data in monitoring applications. This is
accomplished through a two-stage architecture, which separates monitoring tasks between a
front-end, which observes traffic in the network, and a back -end, which stores and processes
the results of the monitoring. The architecture effectively separates trust between these stages,
applying new cryptosystems an d data protection techniques to captured data as early in the
monitoring process as possible, and using a fine granularity semantic access control scheme to
the protected information. The access control is based on 1) the wider context of the
information requested, 2) the entity making the request, and 3) the purpose for which the
request was made. The core system provides the basic support for the development and
deployment of privacy-aware monitoring applications; the project will develop a pilot
implementation of this core system and, in addition, adapt selected monitoring applications to
operate in concert with this core.
This document specifies the high level system architecture for the PRISM system. Section 2
introduces and justifies the basic principl es upon which the PRISM system architecture is
built. Section 3 presents a system -wide comprehensive overview of the proposed architecture,
and discusses the interaction among the various architecture components. Sections 4 and 5
provide a first level of specification for the key system entities, namely the front -end, the
back-end, and the privacy preserving controller). Section 6 introduces the key ideas behind the
semantic model that manages most of the system’s operation in terms of authorisation
permissions and related policies. Section 7 describes the protocol interface (the so -called
IPFIX) chosen for delivering data across the front -end and back-end entities, and for exporting
data to third-parties. Section 8 describes how to interface with an externa l monitoring
application on top of the PRISM architecture. The initial architecture is summarized in
Section 9.
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2 Architectural principles
The PRISM project aims to define a general -purpose, privacy-preserving network traffic
monitoring system architecture.  As such, the fundamental question we must answer before
defining the principles of such architecture is what does privacy preservation mean in the
context of network monitoring?
We have considered this issue at length through an extensive discussion of th e privacy issues
arising from network monitoring [PRISM -D2.1.1], and the impact of these issues on the
requirements for the system [PRISM -D2.1.2]. With the goal of establishing basic architectural
principles in mind, we summarise this analysis as follows: The PRISM system achieves
privacy preservation if it provides the means to effectively control access to monitoring data
and monitoring results such that only the data and/or monitoring results strictly necessary
to the operation of a monitoring task are a vailable to that task . This principle highlights the
following key design aspects to be used as reference guidelines in the specification of
PRISM’s architecture:

1. We consider any approach wherein raw data is collected without provision for
protection or concern for subsequent processing at collection time to be vulnerable. In
other words, the separation between the data collection and data processing functions
common in existing measurement applications inherently risks disclosure of the raw
data, thereby potentially compromising privacy protections. Instead, PRISM views
data collection and processing as a joint task, where data collection and protection is
performed in the specific context of the usage of the data.

2. As a consequence of this design philosophy , the collection of data requires
supplementary capabilities with respect to this context: it must be able to filter and pre -
process data in order to extract the information that is strictly necessary for the
monitoring task at hand out of all network traf fic observed.

3. In order to achieve this discrimination, the architecture must provide for a
formalisation of what “strictly necessary” means. This requires us to specify i) which
specific subset of data must be accessed and/or which monitoring task shall  be
performed; ii) by a user with which rights, responsibilities, and roles with respect to
the data and the monitoring location; iii) for which specific and lawful monitoring
purposes; and iv) depending on which contextual information. All these aspects m ay
vary over time during the monitoring process.

These principles can be met by designing PRISM as a two -stage system (as detailed in Section
2.1), and by providing a generalised access control framework (as detailed in Section 2.2)
.

2.1 Two-stage approach
PRISM’s architecture is split into two broad stages; a front -end first stage which captures
traffic and isolates, extracts and protects traffic data for further processing at a back -end
second stage. In this section we discuss the implications of and rationa le behind PRISM’s
two-stage architecture.

2.1.1 Flow isolation and extraction
Network traffic monitoring is generally devised to extract small pieces of useful information
from a potentially very large volume of data. As such, reducing the amount of data to pro cess
and focusing the data processing on what is really meaningful is in itself a fundamental
requirement before considering privacy issues, solely in terms of performance and scalability
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issues. This is well illustrated by the following quote 1: “If we're keeping per-flow state, we
have a scaling problem, and we'll be tracking millions of ants to track a few elephants ”.
Privacy requirements merely strengthen the need to focus data collection and processing
activities on a subset of the observable data, name ly that which is strictly necessary to perform
a specific monitoring task.
This observation leads to a system architecture composed of two stages: a front -end devised to
collect, filter, and pre-process only the data strictly necessary for performing a sp ecific
monitoring task, and a second stage devised to process such a subset of pre -filtered data. This
arrangement is a first step towards privacy preservation; as a consequence it additionally
provides significant performance and scalability benefits.
In this arrangement, the front -end is placed as close as possible to the source of the data, on or
very close to the traffic probe which collects packets from the observed network. The front -
end isolates the traffic data of interest from all observable traffi c, and extracts the information
actually needed for a given measurement task. Many measurement tasks require only access to
some small portion of the observed traffic (e.g. all flows of a given size), or some small
portion of information about that traffic  (e.g. a subset of the flow header fields). This isolation
can be performed within the front -end, with no data about irrelevant flows being sent to the
second stage. This isolation reduces the risk to end -user privacy though it does not eliminate
it, as the isolated subset of data may still contain sensitive information and as such might
require further control in the second stage; we address this in the next section. Nor is flow
isolation necessarily an easy task to perform “on the fly”; we will address th is challenge
within the scope of PRISM work packages WP3.2 and WP4.1.

2.1.2 Per-flow protection
It is not always possible to completely eliminate traffic irrelevant for a given measurement
task within the front-end through isolation, or to significantly reduce the information reported
for each flow through extraction.  In this case the information passed to the second stage
requires additional protection to reduce risks to privacy.
Consider a monitoring task which needs to analyse all of the information collecte d for a given
flow, but where flow isolation is technically possible only after the flow has been partially
processed, or compared to information derived from other flows. A simple example of this
situation would be traffic thresholding based on flow volum e percentile. Here the operation
requires access to some information (flow volume distribution) from every flow. The state
required to support this operation as part of flow isolation at the front -end is prohibitive,
especially on resource-constrained devices.
To address this issue, the front -end may in addition selectively or completely protect, through
encryption, measured data on a per -flow basis, delivering this encrypted data to the second
stage. According to the requirements of the specific measureme nt task, the second stage may
then selectively decrypt only the flows for which a detailed analysis is deemed necessary . This
selective encryption is to be enabled by using distinct encryption keys on a per -flow or per-
class-of-flows basis, so that the second stage will be able to access only a subset of the data
delivered by the front-end. A single encryption key for the whole traffic delivered to the
second stage would yield an all -or-nothing approach.
Note that this issue may also be addressed in a sligh tly different way: not by decrypting the
data selectively within the second stage, but by selectively projecting the operations to be
done for the specific monitoring task into encrypted space, thereby extracting less privacy -
sensitive information from the  measured data without decrypting it. We note that this
approach will require the application of novel cryptosystems, and must be applied in a case -
by-case way to each specific task or set of primitive operations .

1 Van Jacobson, End-to-end Research meeting, June 2000; quote reported in C. Estan, G. Varghese, “New Directions
in Traffic Measurement and Accounting”, SIGCOMM 2002.
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Note that both of these approaches requir e some method for conveying keys to the second
stage. Though this detail is not relevant from the standpoint of architectural principles, two
potential solutions to this problem appear possible. i) A key repository that can be selectively
accessed only if certain conditions emerge can be added to the PRISM architecture, or ii) key
material may be embedded within the data delivered to the second stage, so that the key can
be reconstructed only if certain conditions emerge. These approaches may be applied in a
complementary fashion.

2.1.3 Implications on the PRISM architecture and emerging trade -offs
Implicit in the requirement to isolate flows, extract data from them, and selectively protect
them within the front-end is the fact that, in contrast to other monitorin g systems, there is no
single front-end traffic capturing component valid for all situations , but that the first stage
must adapt to the specific monitoring task pursued. This further implies that when multiple
measurement tasks are performed by the same s ystem over the same observed traffic, there
may be up to one logical2 first stage per measurement task .

2.2 Access control
A two-stage approach predicated around the isolation, extraction, and protection of data
ensuring that the measurement tasks access only  the data that is strictly necessary requires a
formal definition of “strictly necessary”. This section addresses this requirement, and outlines
how the system actually guarantees enforcement of access restrictions to the data .

2.2.1 Need for semantic specificat ion
Network traffic monitoring is not a single, well specified activity. A monitoring task can be
considered as a means to answer some single question about the activity of the network under
monitoring.  The thorough specification of which data is “strictl y necessary” thus depends on
what question is being asked, about what aspects of the network, and by whom, requiring an
in-depth clarification of the following issues:

 What is the purpose of a monitoring task (e.g., SLA enforcement, intrusion
detection, traffic profiling, accounting and billing, etc.)?

 Which specific traffic information  is required to accomplish that purpose? This can
be either information explicitly present in the observed packets (e.g., header fields,
payload sections) or derived from one  or more analysis functions performed on the
observed packets (e.g. flow size distributions). Information considered strictly
necessary must have the minimum possible information content for the purpose. For
example, raw IP address information from the pac ket header is not strictly
necessary if the given purpose could use IP address information aggregated by
network (as is often the case for traffic engineering purposes) or anonymised IP
address information (as in any task not requiring any form of host att ribution)
without loss of functionality.

 What entity (a system administrator, a division in the operator’s organisation, the
public research community, etc) runs the monitoring task and has access to its input
data as well as the results?

These aspects are in general not static, but may depend on intermediate results of the
monitoring application itself, and hence change over time. For instance, a network intrusion

2  We say “logical” here because each of these first stages may be deployed on the same physical device or even within the same
process context on that device. The mapping is not necessarily one -to-one because certain measurement tasks may be able to share identical
first-stage processing operations. An analysis of the tradeoffs between resource efficiency in sharing first stages and additional protection
risks implied by this arrangement is beyond the scope of this document, but will be addressed in subsequent documents.
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detection system residing at the perimeter of a network may not strictly need to access IP le vel
information in order to detect attack activity. However, once an attack is detected it may need
to precisely attribute the attack activity to a set of source addresses and targets in order to
respond to the attack. The dynamic nature of this necessity implies there is another aspect
which must be addressed:

 What is the context in which the information is collected and processed, and how do
variations in context affect the three previous aspects?

A thorough classification of monitoring tasks with respect  to these aspects is a daunting
undertaking, however a complete ontology of monitoring tasks and subtasks is out of scope of
the PRISM project; nevertheless we aim to provide significant contribution by setting the
basic structure of such a comprehensive, “proof-of-concept” classification, and demonstrate
its effectiveness through selected specific monitoring scenarios and use cases.
In that respect, our proposal consists of the specification of a semantic model which captures
and integrates all of the necessary aspects of a monitoring task . This semantic model not
only accomplishes the goal of specifying and formalizing such knowledge, but can be also
used as the basic engine for the enforcement and control of the access to traffic data and
monitoring primitives and resources.

2.2.2 From semantic to authorisation
The architecture of the PRISM system shall specify an access control system conforming to
the specified semantic model. This access control system will guarantee the enforcement of
derived policies in l ine with the security and privacy requirements specified in [PRISM -
WP2.1.2].
A naive approach to the design of this access control system, by simply centralizing all access
control decisions within a “super -entity” embracing both front -end and back-end would be
reductive and unrealistic. Such a system would be undeployable in the real world, taking into
account the technical and social separations between administrative domains. Therefore,
PRISM adopts a decentralised and distributed approach. In this conte xt and in order to enable
the flexibility of the authorisation infrastructure, PRISM exploits the paradigm of the
Privilege Management Infrastructures  (PMIs). Indeed, the goal of PRISM is to guarantee
that only entities with a given privilege level, depend ent on the specific monitoring purpose
and context, may ultimately access some system resources. These resources may be stored
data, meta-data, or monitoring subtasks, analysis functions deployed within either the front -
end or back-end components. And, whi le some access decisions rely on ad hoc information
that is very dynamic in nature and, therefore, must be evaluated in real -time by policy-based
mechanisms, there are cases where access depends on, or is affected by, contextual attributes
that remain static for a given period (e.g., a role). This information can be evaluated “off -
line”, and it can be expressed by means of PMI attribute certificates, resulting in a reduction
of the effort needed for its “on-line” processing and evaluation.
Privilege management infrastructures are centered on an entity known as the Source of
Authority (SoA), which generates and manages authorisation profiles, permissions, and
policies. These services are provided offline, such that entities using the infrastructure can
independently verify authorisation permissions without the need to interact with the SoA. In
other words, PMIs are to authorisation what Public Key Infrastructures (PKIs) are to
authentication. PMIs use attribute certificates (ACs) to hold user privileges, in t he form of
attributes, instead of public key certificates (PKCs) to hold public keys. PMIs have Sources of
Authority (SoAs) and Attribute Authorities (AAs) that issue ACs to users, instead of Root
Certification Authorities (Trust Anchor) or Certification A uthorities (CAs) that issue PKCs to
users. The SoA is then analogous to the Root CA, which has no run -time role in the operation
of the infrastructure.
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These considerations suggest the inclusion of a Source of Authority (which we call a Privacy-
Preserving Controller or PPC for short), which provides and manages 3 authorisations through
offline “contracts” with the various PRISM system components, for example in the form of
X.509 certificates, in conformance with PRISM’s semantic model. Since the semantic mod el
is designed in accordance with legal and regulatory requirements, the system will comply with
the context of the legal and regulatory environment in which it is deployed.
The complete PRISM access control system will complement this PMI -based model with the
run-time evaluation of access requests according to the role of the accessing entity and
application, as well as the context in which the access request occurs. The PPC may also be
more than an elementary SoA, as it may also be necessary to involve t he PPC at runtime in
certain exceptional conditions, e.g., when a request to decrypt protected data arrives in the
setting of lawful interception.

2.3 Monitoring flow chart
From the viewpoint of the monitoring tasks is performs, an example PRISM instance is
composed of the processes shown in the flow chart illustrated in Figure 1. The PRISM
capturing device in the FE captures all packets with full payload. In the next step the traffic is
isolated according to the goals and the needs o f the monitoring purpose. The intention is to
identify in the FE the flows relevant to a particular monitoring application, as explained in
Section 2.1.1, in order to make the analysis on the data easier. This can, for example, mean
just flows the packets of which match a predefined filter string, or flows which’s rate exceeds
a given threshold. The specific FE analyses for the monitoring purpose are performed in real
time mainly on the network processors. After the flows’ isolation and extraction analysis the
packets are further processed before being delivered to the BE. All the information collected
in the FE requires additional protection to reduce risks of privacy violation as described in
Section 2.1.2. The encryption key will only be delivered to the BE if a particular flow has to
be further analysed in the BE or in an external monitoring application. Depending on the
results of the FE analysis (e.g. some threshold was exceeded), the system decides whether
further and deeper analysis at the BE is requi red.
The BE receives the monitoring data and, if necessary, the decryption key(s) (e.g. in an IDS
scenario, if the flow is suspicious) and stores them into its database (DB). If further analysis is
required and the key was received, the relevant data are t aken from the DB and decrypted. If
the information can be still reduced to fulfil the monitoring purpose it is reduced to the
minimal information needed for the monitoring purpose. Some data may be anonymised and
filled with empty or scrambled information to match the format expected by the monitoring
application. Finally, the data are handed over to the monitoring application to perform the
analysis and to receive the requested results.
Finally it is important to underline that between different monitoring  purposes the exact
actions for each block may vary and some blocks may not even be necessary (e.g. the flows
sent from the FE to the BE in order to be analysed by a specific monitoring application are not
encrypted). The behaviour of every block depends, in the end, on who (e.g., a police officer or
an ISP employee) is running the particular traffic monitoring application and why (e.g., for
tapping or for network performance monitoring).

3 We recall that, even if off -line, PMIs do not lead to a static (i.e. once for all) authorisation model. As in the case of
PKIs, PMI certificates can be revoked and have expiration da tes. New authorisation models emerging in scenario changes
(such as a change in regulation) can hence be enforced in the system by properly managing the already issued authorisation
certificates, and by issuing new certificates or policies conforming to the updated scenario.
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Figure 1: Monitoring flow chart
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3 Architecture overview
The realisation of a general -purpose monitoring framework providing strong protection for
personal data poses a number of problems that influence the design of the architecture. In this
section, we give an overview of the proposed system and try to highlight the important aspects
in the chosen architecture.

3.1 Example scenario
Before describing in detail the three main components realizing the PRISM architecture, let us
start by introducing a simple scenario  (Figure 2) that stresses the main challenges related to
the design of such a privacy preserving traffic monitoring framework.
To this end, let us assume that three ISPs share the same Internet Exchange Point (IXP), and
that for a particular reason (e.g., data retention, QoS monitoring, DoS detection) all three ISPs
need to monitor the traffic departing from and arriving to their specific networks. In this
scenario, illustrated in figure below, it makes sense that the traffic is collec ted by the IXP
manager on behalf of the ISPs. The IXP manager's task is to deliver to each ISP the proportion
of traffic related to the network of the particular ISP. To this end, without yet taking into
account the users' privacy, the IXP first has to ide ntify and authenticate each ISP in order to
ensure that each ISP requests only the traffic relevant to them. Moreover, also during the
traffic monitoring activity the IXP has to pre -classify the data flows accordingly in order to
deliver each ISP the corresponding part of the traffic. Note that within the PRISM system, in
line with the IPFIX standard, the term flow is used in a wide sense to mean any kind of
information flow driven by the arriving packets. For example, a number of packets observed
during a time period of 1 minute constitute a flow in this sense (time series).

Figure 2: Example scenario

The monitoring framework proposed by the PRISM project is based on a two -stage
architecture, which separates the actual monitorin g tasks between i) a front -end (FE), which
observes traffic in the network, and ii) a back -end (BE), the task of which is to store and
(further) process the results of the monitoring activity. The architecture is complemented by a
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third entity, referred to as iii) the Privacy Preserving Controller (PPC), the role of which it is
to act as the source of authority (SoA).
In the context of the example scenario, when an employee of an ISP needs to execute a
monitoring application that needs to have data collecte d in the IXP, he or she first needs to
authenticate at the BE. After the employee’s credentials (i.e., password, X.509 certificates,
etc.) have been verified by the BE, the BE then provides its credentials to the FE.
The FE first verifies that the BE is allowed to receive the requested set of data for this
particular application. If this is the case, then the FE starts to isolate the flows relevant to this
monitoring activity and delivers them to the BE.
Note that the information required depends complet ely on the particular traffic monitoring
application. In particular, the underlying philosophy of the PRISM architecture is that only the
information strictly needed to accomplish a specific traffic monitoring task should be provided
to the BE by the FE, and nothing else. For example, if the flow data consists of packets, then
the corresponding packets relevant to the specific traffic monitoring activity are first
processed by appropriate protection mechanisms (e.g., anonymisation and encryption) before
transmission to the BE.
Finally, we recall that an entity belonging to the PRISM architecture (i.e., the FE for example)
in order to verify the credentials (i.e., an X.509 credential certificate) presented by another
entity (i.e., the BE for example) or by a n employee of some organisation (if needed) first
requires a cryptographic verification of the signature of the credential certificate and then a
verification (based on the policies set forth by the PPC) that the presented credentials are
suitable or sufficient to be authorised to perform a specific operation.

3.2 Components of the PRISM architecture (FE, BE, PPC)
As already mentioned, the PRISM architecture consists of three components, the front -end
(FE), the back-end (BE), and the privacy preserving contro ller (PPC).
The FE provides the basic functionalities necessary to capture, isolate, and protect the flows.
In the FE the traffic captured by a Capturing Unit is processed in order to both i) filter the
flows interesting to a specific monitoring applicatio n, and ii) to protect the flows in order to
disclose to the monitoring application only the data it strictly needs to accomplish the task. In
other words, the data filtering process at the FE from one hand ensures protection of the user's
privacy by preventing an application to analyze all the traffic collected in the network. On the
other hand, the filtering process can also greatly reduce the amount of data the monitoring
application has to analyze to complete the task, thus improving the performance and
scalability of the monitoring application itself.
The BE constitutes the system’s entity that mediates between the information sources (i.e., the
FEs) and the information consumers (i.e., the monitoring applications), controlling the access
of the latter to the traffic data sent by the former. In that respect, the BE provides an interface
for the monitoring applications, which can be seen as the “end -users” of the information
collected, while it provides the corresponding mechanisms for the authentication a nd
authorisation of the applications and their users. These mechanisms include the verification of
identities, roles, credentials, and access rights. On the other hand, the BE has to interact with
the FE in order to initialise and manage the data capturing  activities.
Note that even if a pilot implementation of the PRISM architecture is targeted for deployment
at an SME (i.e., where both FE and BE are managed by a single entity), this is not the case in
general. Instead, there clearly are situations where t hese two entities are managed by different
authorities, as already indicated in the example scenario of three ISPs sharing a single IXP.
One can further anticipate a scenario where more than one BE has to interact with more than
one FE. The PRISM architecture will be able to cope with this kind of scenario easily. For
example, the FE should be seen, to some degree, as an element that can be triggered by any
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entity which is in possession of the appropriate credentials. These credentials or authorisations
as well as the corresponding policies are provided by the third element of the PRISM
architecture referred to as Privacy Preserving Controller (PPC). In daily operations, the PPC
has a relatively passive role. The PPC acts as the source of policies and creden tials for both
the FE and the BE, which, by some means, must obtain them from the PPC before any other
operation can take place. Both the credentials and the policies issued by the PPC should take
into account commercial agreements (e.g., between the ISPs and the IXP in the example
scenario), the current legislation, and the internal decisions of the ISP .

3.3 BE-FE interaction and characterisation of the roles
The interaction between BE and FE consists of control and data channels  as shown on
Figure 3. The control channel is used by the BE to provide the FE with credentials,
information about the monitoring application requesting the data, etc. The data channel, on the
other hand, is used to exchange the actual data resulting from t he monitoring. As already
stated, the data captured by the FE are filtered and protected according the specific monitoring
applications’ needs.

Figure 3: Interaction channels of FE and BE

It should be emphasised that the use of  certificate based identity and permission management
between the FE and BE allows the PRISM architecture to be employed also in very large scale
network monitoring scenarios (e.g., a large ISP), where several BEs and FEs could be
deployed. In general, each BE is provided with credentials or certificates that allow it to
obtain specific type of flow or flows with a specific level of protection (i.e. encrypted and/or
anonymised) from the specific FE, while at the same time, the roles of the persons using the
particular applications is taken into account by the given BE.
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From the PRISM requirements the data channel from the FE to the BE is a unidirectional
IPFIX session, secured by TLS. While IPFIX can be used to export raw flow data from the FE
to the BE, raw packet data using PSAMP, or unprotected summary data via flexible flow keys,
we do not anticipate this will often be the case, given data protection requirements. Instead,
the flexible data model provided by IPFIX will be used to export processed and prot ected
data, while inlining metadata (e.g. anonymisation metadata, or secret -sharing key fragments
required by the cryptosystem in use by a given analysis). Note that the use of TLS implies that
X.509 certificates will be used for transport security identit ies, which allows the integration of
identity management between the transport layer and access control system. More details on
this interaction appear in Section 7.
The control channel between the FE and the BE may also be used by external components to
control the behaviour of the FE. This allows the usage within an existing monitoring
framework (e.g., MINER) to allow for an easy integration in operational networks. The
monitoring framework has to interact with the PPC in order to receive the appropriate
credentials to control the FE.
The task of the FE is to collect the data required by monitoring applications, which may
include also some elementary operations needed to properly filter or elaborate the flows of
interest (i.e., the information strictly nee ded by the monitoring application task).
However, the FE is not supposed to keep track of the “history” of the data flows, but instead
one should consider that the operations carried out by the FE have to be fast, implementable
also in hardware (for fast real-time operation), and above all, such FE operations should not
be based on the packets previously collected belonging to the same (or some other) flows.
This implies, e.g., that the FE has no access to the stored traces, and that all the operations are
triggered by arriving packets. Packet encryption is performed per packet. The element capable
of analyzing the overall situation based on more complicated and extensive information, in
off-line fashion if needed, is the BE (as well as the traffic monitorin g applications operating
through the BE). Note that while the FE is in possession of the full payload (including privacy
sensitive parts therein), the (final) analysis carried out at the BE is limited by the protection
mechanisms applied to the packets by the FE.
.

3.4 PRISM ontology
As described in the previous chapters, the need for the semantic representation of several
concepts underlying the PRISM framework has been clearly identified. These concepts
include the particular data types that are collected and  processed, the purpose behind the
targeted analysis, the roles of the entities involved in the collection and processing chain and
any other information that determines the context of a monitoring application’s execution. The
PRISM system’s behaviour will  strongly depend on these parameters and, therefore, all these
concepts along with the rules that regulate access and specify additional behavioural norms
are integrated in a semantic model, implemented by means of an OWL ontology [OWL].
The different concepts that comprise the PRISM knowledge base, and thus they affect PRISM
operation and constitute the classes of the PRISM Ontology, include:

1. Types of personal data, both native, e.g., header fields, and derived after processing.
2. Types of monitoring services, representing monitoring tasks and purposes.
3. Types of roles that characterise the different actors.
4. Contextual information, such as the specific conditions that characterise the specific

execution of an application, the history of data retrieval, etc.
5. PRISM system’s components that correspond to analysis functions.
6. Workflows that are executed for the transformation of a data type to another.
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7. Rules that define access rights and complementary actions that are performed in
association with some access to dat a and depend on all the parameters above.

The PRISM Ontology serves for the expression of regulatory provisions into concrete rules
and its scope in terms of feeding the system wide decision engines. One thing that is worth to
be noted here is that the use  of ontology has been preferred over a legacy policy language,
such as OASIS XACML [XACML], because of its expressive power. The use of an ontology
enables the specification of complex concepts, data types, hierarchies, relations, etc., while
providing significant advantages in terms of rules consistency evaluation, reasoning
capabilities, as well as integration with other semantic models .
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4 Front - end
This section describes a high level architecture of the front -end component, which is
responsible for observing the traffic in a link in real -time.
In order to fulfil its role in the PRISM architecture, the front -end block must provide some
basic functionalities, performed by several devices that communicate, e.g., through a LAN
network which is not physicall y accessible from the outer network. Note that the front -end is,
by definition, directly attached to the observed link, and thus it must be protected physically
the same way as the corresponding link.

Figure 4: Front-end architecture

As shown in Figure 4, the FE consists of several types of functional blocks:
 Capturing Unit (CU) can be implemented to consist of one or several standard PCs

equipped with a board hosting a network processor connected to t he local PCI bus.
Such a board is typically be equipped with up to three Gigabit Ethernet interfaces, and
are capable of capturing traffic flowing over a gigabit link with precise timestamps for
each packet. Moreover, such boards can classify each packet b ased on a rule set
according to the canonical 5 -tuple. Once the capturing phase is performed, the
classified flows are demultiplexed to a cluster of processing units. A classification rule
is associated with one or more processing units and flows are sent to the selected
devices. To execute these operations, the CU must support on -line configuration of
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such a demultiplexing table, upon interaction with the FE internal control plane. For
the demultiplexing data can be sent to different processing units (PU, see below), e.g.
by sending to different MAC addresses; then the actual physical demultiplexing task is
performed directly by the Ethernet NICs.

 Data Plane Manager  (DPM) is a logic unit responsible for communicating, by means
of proprietary protocols, whic h flows have to be sent to which processing unit and
what kind of processing has to be carried out by each of them.

 Cluster Processing Unit  (PU) are in charge of actually implementing the data
protection techniques. Since this kind of data protection stric tly depends on the
application requiring the traffic traces, different tasks must be performed concurrently
within these blocks. Since different PUs can be considered as being totally
independent, each of them has to implement its own stack of protocols to  communicate
with the BE. In addition, PUs must support communication with the internal FE
control plane in order to receive the configuration messages.

 Configuration Interface  (CI) is in charge of receiving the configuration transactions
from the BE and of authenticating and authorizing them. Once a configuration
transaction has been authorised, the task of actually enforcing it is performed by the
DPM .

Such devices communicate the data related to different traffic flows captured on the
monitored link.

4.1 Front – end control interface
Since packet capturing and first stage of data analysis have to be configured on -demand, the
FE block must be provided with a control interface for on -line configuration
A typical configuration transaction will involve a Back -End Monitoring Agent (BE-MA)
issuing to the FE interface a request for accessing the output of a specific FE analysis function
(possibly performed over specific traffic flows).
The FE will therefore decide what kind of sensitive data it is allowed to disclo se and, hence,
apply a proper data protection policy. Such a decision will be based on the authorisation
certificate (issued by the PPC or by a proper delegated authority) that will be provided by the
BE-MA.
Several solutions for specifying permissions are  available (X.509 RBAC, SAML); the choice
of the proper protocol will be then considered in a later phase.
In order to allow for a precise description, we will use a conceptual model of processing
functions of the FE. In particular, we assume that the FE  supports a finite set of analyses
α(φ,π), where φ is a vector of traffic flows and π is a vector of application -dependent
configuration parameters (such as packet snapshot length).
Subsequently, each authorisation certificate will specify:

 a set of analysis tasks that can be set up,
 an (optional) range of values that each parameter of each analysis can assume (e.g. in

some cases the analysis can be allowed to process the whole packet payload, while in
other cases its scope can be limited to the header sec tion),

 an (optional) specification of the traffic flows which the authorisation is limited to.
After the interface has received an authorisation certificate, the FE interface has to check the
identities of both the BE-MA and the authority which generated the authorisation; this can be
easily achieved by using Public Key Certificates (PKC) generated by a trusted authority.
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Authorisation certificates can also have an expiration time; when such a time limit is reached,
the authorised analysis function is torn  down.
After the identities of the parties involved in the transaction have been verified, the complete
specification of the analysis to be set up is sent from the BE to the FE control interface.  In
particular, such a specification will include:

 identifier of the specific analysis function which has to be set up
 actual values of the configuration parameters in π
 specification of the flows which will be processed by the requested analysis
 address of the host which will receive the processed data

Naturally, all of these specifications must be checked against the authorisation certificate
which has been submitted in the previous phase. After that, the interface will convey the
configuration data to the DPM, which, in turn, will issue the proper configuration messages to
the different components of the FE block. A connection will be established directly between
one of the processing units of the FE and the selected host in the BE, and the output of the
analysis function will flow through such a channel.
Limited on-demand reconfigurability of the FE analysis functions can be provided by
allowing the BE-MA to update the configuration parameters in π while an analysis is running;
in this case, the BE-MA will issue an “update” message without repeating the whole
configuration transaction. Therefore the interface will only have to verify the identity of the
issuer and to check that the new parameters are conforming to the authorisation certificate. In
order to speed up such a transaction (which can be part of a loope d control cycle of a
monitoring application), the FE may cache both the identity and authorisation certificates
which were retrieved during the configuration phase.
In addition, the FE interface has to check the expiration date of its cached certificates a nd, in
case of expiration, to stop the associated analysis.

4.2 Data plane manager (DPM)
The data plane manager is in charge of configuring and coordinating the devices involved in
the captured data processing. In particular, after a request for setting up a new analysis is
validated by the FE control interface, the DPM:

 selects the processing units in charge of performing the new processing task,
 sends appropriate configuration messages to such a processing unit, including the flow

to be processed and the values of the analysis operational parameters,
 sends appropriate configuration messages to the capturing unit, including the

description of the flow to be monitored and the address of the chosen processing unit.
In particular, the DPM is responsible for confi guring pre-filtering within the FE capturing
unit: such a function performs a preliminary selection of the packets belonging to a given flow
based only on the canonical 5 -tuple. A more refined filtering process, which will select the
packets belonging to a  flow based on arbitrary rules (e.g. packet length, presence of a pattern)
will be performed by the PUs. Notice that such a classification activity can turn out to be very
processing-intensive and can raise very challenging performance issues. As an exampl e, let us
assume that a BE analysis requests a flow composed of all the packets containing a given
string: such a request involves a PU performing deep packet inspection at gigabit speed.
Although this is feasible with a proper hardware platform, it has to  be carefully taken into
account during the FE design.
The DPM is also responsible for keeping updated the state information concerning the
association of each analysis to a selected Processing Unit and for maintaining a coherent
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version of the capturing unit classification table. Based on such information, a new analysis
can be allocated, according to performance optimisation criteria and already set -up analyses
can be torn down (e.g. in case of an authorisation revocation) or updated with new parameters.

4.3 Capturing unit
The capturing unit is essentially made up of one or several PCs equipped with a board hosting
a network processor through the local PCI bus.
The board can be equipped with up to three Gigabit Ethernet interfaces, which can be used
both to capture traffic and to deliver data to the processing units

4.3.1 NP board
The software running on the NP board must capture the incoming traffic and either classify it
into flows or, if no match with any classification rules is found, discard them.
Notice that at this stage flow classification is based only on the value of the canonical 5 -tuple
(IP addresses, ports, protocol). Classification based on other values has to be performed by the
PUs. In the definition of a flow, wildcard values are allowed, thus guar anteeing a fair degree
of flexibility.
If the traffic rate is so high that a single probe turns out to be insufficient, the whole incoming
stream can be mirrored to several NP boards in charge of running non overlapping sets of
classification rules so as to balance the overall load among different units.
Packets belonging to the same flows will be compressed and placed into batch frames, which
will be delivered to the associated PUs.
A batch frame consists of a collection of data structures whose fields ma y include:
 packet snapshot

(e.g.  the first n bytes -  a different value n can be defined for each flow),
 flow id,
 timestamp.
Flow demultiplexing is performed at the MAC level through the association among batch
frames and the MAC addresses of the network cards of the PUs that will be in charge of
processing packets of that flow.
In addition, the NP keeps track of some cumulative statistics for each flow (basically packets
and bytes count).
The NP board communicates with the host CPU through the PCI bus. T he classification table
used by the NP is computed and updated by the host CPU, which loads it into the internal
memory of the NP board. Optionally, the CPU can periodically read the flow statistics
collected by the network processor .

4.3.2 Host PCs

The host PC constitutes the interface between the capturing unit and the FE control plane. It is
in charge of creating and updating the classification table and to write it to the NP memory
banks. For each flow, such an application receives from the control plane th e following
information:

 definition of the flow (in terms of range of values in the domain of the 5 -tuple),
 corresponding flow id,
 length of the packet digest to be included in the batch frames,
 one or more (layer 2) destination addresses (packets belongin g to the same flow can be

included into multiple batch frames).
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Optionally, the host PC can provide the PUs with cumulative per -flow measurements, read
directly from the NP board. Although, from the functional point of view, extracting per -flow
measurements looks more suitable for a PU, executing it directly on the capturing device can
be very profitable in terms of performance.

4.4 Processing units
Processing units consist of a cluster of possibly heterogeneous devices (commodity PCs, NPs)
that actually run the most complex anonymisation and preprocessing algorithms before
delivering the resulting data to the PRISM back -end. In particular, the PUs are in charge of
executing the application specific FE analysis functions, which are triggered and configured
by proper configuration messages issued by the DPM. Each processing unit can execute one
or more FE analyses, depending on performance issues.
The network card(s) of such devices will receive the batch frames sent by the capturing
devices through a proprietary  protocol over Ethernet.
The use of such a communication paradigm requires the implementation over each unit of a
software compatibility abstraction layer in order to allow running analyses to actually retrieve
packets through standard data interfaces. Furthermore, the abstraction layer limits the packets
processed by a FE analysis to those selected by the CU, thus guaranteeing both a performance
improvement (fewer packets to be processed) and information segregation (the FE analysis
cannot access packets belonging to other flows).
A daemon-like process runs on each processing unit and is in charge of handling the
configuration transactions issued by the DPM and to manage the FE analyses accordingly.  In
particular, such a daemon will take care of startin g up a requested analysis and updating the
parameters of an already running one.
The isolation of such a flow is performed by the PU itself if the flows which an FE analysis
has to process are defined over a domain which encompasses parameters other than t he
classical 5-tuple.
The processing units are also responsible for communicating with the BE agent: a connection
will be established directly between one of the processing units of the FE and a selected host
in the BE. According to the IPFIX protocol, th e processing unit will initiate the connection
and will transmit an IPFIX template message in order to describe the format of the processed
data. IPFIX considers a flow to be any number of packets observed in a specific timeslot and
sharing a number of defined properties. The FE is free to use user -defined data types in its
messages: the protocol is indeed freely extensible and the used fields can be adapted to
different needs.
Since the whole data flow has to be encrypted, a secure communication protocol h as to be
implemented by the two end-points of the connection. A broadly diffused protocol that allows
a secure connection is the IPSec suite, which represents the standard for ensuring a secure way
for data communication at the network layer. By providing the security services at network
layer, IPSec is more flexible than TLS, which depends on the transport layer protocols.
Mainly, IPSec defines two distinct protocols, which can also be used together: Authentication
Header (AH) that provides data authentica tion and Encapsulating Security Payload (ESP) that
basically provide data encryption and can optionally provide data authentication. Moreover,
we suggest the tunnel mode of IPSec that encrypts both the header and the payload .

4.5 Internal communication networ k
Since the different units of the FE block have to exchange both configuration messages and
data to be processed, both a control plane network and a data transfer network are needed;
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since they have different functionalities and requirements, the two netw orks are logically
isolated, although they can share the same physical layer.
The data plane network has to convey the captured data to the proper processing units and is
likely crossed by high bit rate traffic. Since all the units of the FE are assumed to  be
physically adjacent, correct demultiplexing of captured data can be provided by the layer -2
forwarding mechanisms, thus avoiding the processing and bandwidth overhead related to
upper layer protocols. Data plane messages can be Ethernet frames (jumbo f rames have to be
supported in order to allow the transport of maximum size captured packets) containing
captured data formatted according to a proprietary protocol. Since performance is the main
concern in the data plane, such a protocol must imply a low o verhead (small headers and no
state information). In addition, since it has to be handled by network processors, which cannot
rely on existing libraries and have a limited programming flexibility, such a protocol must be
easily implemented and parsed (few fixed size fields and no complicated options).
On the other hand, the control plane network has no particular performance concerns (since it
basically operates in a slow data -path) and implementation concerns (since it is accessed by
standard PC-like devices), and therefore it can be designed foremost with flexibility and
reliability of communications in mind. To this end, several solutions appear to be suitable
(HTTP, XML messages); the choice of the specific protocol is an implementation -time
determination.
Notice that, for the two networks, no security and authentication issues have been taken into
account due to the following assumptions:

 all units of a single FE reside in the same physical location and administrative domain,
which is not accessible by untrusted entities,

 only communication points with the external network are the control interfaces (which
are designed for authentication and security) and the data interfaces of the processing
units (which only push IPFIX reports to  a set of collectors at the BE).
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5 Back- end and   privacy-preserving controller
The PRISM Back-End (BE) provides a storage for the measured data and carries out both data
analysis and access control computations. Privacy Preserving Controller (PPC), on the other
hand, is the ultimate source of authority providing, among other things, the semantic rules for
the system, as well as, the (root) cryptographic keys.  Together they constitute a policy -based
access control system. Note that term “access” does not mean “access to data”, bu t rather
access to execute an analysis. In essence, when an actor running a monitoring application
submits a request to the PRISM system, it tr iggers the execution of a sequence of analysis
functions; this sequence is dynamically created depending on the “ privacy context”. That is,
the actor is granted access to the execution of the sequence of analysis functions and,
consequently, to the resulting data sets. This is something that essentially differentiates the
PRISM access control model from the other pri vacy-aware access control models that exist in
the literature and has its roots in the fact that, in contrast to the other approaches, PRISM uses
raw network traffic as first material instead of well -defined data structures.
Similarly to other policy-based systems, in the context of this joint BE – PPC operation, the
access control functionality follows the Policy Decision Point / Policy Enforcement Point
(PDP/PEP) abstract model [RFC3198], with the BE clearly playing the role of access control
enforcement point. Since the analysis functions executed at the Front -End (FE) are transparent
to the BE, what the PDP provides is the definition of the BE’s functional behaviour, i.e., the
sequence of analysis functions that need to be executed in the context of a re quest. This BE
Analysis Functions Sequence (BAFS) is enforced by the PEP.
In that respect, several things are clear:

 the PEP resides at the BE;
 the underlying policies are specified in and provided by a semantic model, i.e., the

PRISM Ontology (Section 6);
 the system’s architectural entity in charge of the definition and lifecycle management

of the PRISM Ontology is the PPC.
An issue that possibly needs further investigation is where the access control reasoning takes
place, that is, where the “privacy c ontext” is evaluated following the rules defined in the
PRISM Ontology in order for the BAFS to be specified on the dynamic, ad hoc basis that
PRISM puts in place. In other words, where the PDP resides remains an open issue.
There are three possible approaches:

a) PDP is hosted by the BE : under this scenario, the PPC disseminates the PRISM
Ontology to the corresponding associated BE(s) and every time a request reaches a
BE, the BE reasons taking into account the “privacy context” and takes the necessary
decisions regarding the specification of the BAFS. Immediately after, the BE proceeds
with the enforcement (execution) of this BAFS.

b) PDP is hosted by the PPC and the BE “asks” the PPC about the BAFS:  in this case,
when a request reaches the BE, the BE provides t he PPC with the privacy context (i.e.,
a set of attributes {data, purpose, role, conditions, …}) and the PDP functionality of
the PPC determines the BAFS on this basis. This BAFS is communicated to the BE in
order to be enforced.

c) PDP is hosted by the PPC which issues ACs specifying the BAFS : this case is similar
to the previous one, with the fundamental difference that after the reasoning, the PPC
issues an X.509 Attribute Certificate (AC) assigned to requesting entity, specifying the
BAFS in the AC. Evidently, this scenario presupposes that the requests are submitted
not only to the BE but to the PPC as well.
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Among the three approaches described above, the more reasonable and convenient one is the
first approach (a). The second approach (b) has the signific ant disadvantage that it requires
communication and functional interaction between the BE and the PPC on a continuous basis.
Consequently, it implies a need for a specification of a proprietary BE  PPC protocol, as
well as, an introduction of communicatio n delays to the overall operation.
Similarly, the third approach (c) suffers from the fact that the requests must be first submitted
to the PPC for issuing an AC, and then this AC must be submitted to the BE. Additionally, the
management of the ACs become s a very complex and onerous task, since the ACs must be
issued for every request, be used only once for the given request, and be immediately revoked
after having been used. As a matter of fact, the burden imposed by the ACs management has
been frequently cited in the literature (e.g., [CHADWICK2003], [KNIGHT2002]), while the
dynamic, “privacy context” -based nature of access permissions (“privileges”, following the
terminology of [ITU-T2005]) of PRISM makes the situation even harder.
Another important point that should be noted here is that, in both approaches (b) and (c), there
is an implicit need for state maintenance in the context of every monitoring application
execution. This is because every request is state -dependant with respect to the previous
requests that took place during the life cycle of a monitoring application execution.
Therefore, in what follows, the description provided adopts the first approach, that is, the
coexistence of the PDP and PEP at the BE. However, only a few changes would be n eeded in
the case of the adoption of any of the other two approaches.

5.1 Roles management and authorisation
Each actor that participates in the PRISM operation is assigned with a role. As explained in
Section 6, each role has its semantic definition in the P RISM Ontology, while the different
roles are organised hierarchically. That is, one aspect of the PRISM access control model is
that it constitutes an Hierarchical Role -Based Access Control model (H -RBAC)
[FERRAIOLO2001], actually a very extended one.
The assignments of roles to actors are hold by Role Assignment ACs (RAACs) [ITU -T2005].
In that respect, a fundamental responsibility of the PPC is to play the role of the Source of
Authority (SOA) in the PRISM Privilege Management Infrastructure. The PPC is u ltimately
the system entity responsible for issuing ACs to trusted holders, which can be either actors or
subordinate Attribute Authorities (AAs), such as associated entities at each department of the
operator so that distributed and hierarchical roles’ ma nagement to be possible. In this context,
PRISM implements a Privilege Management Infrastructure.
When an actor participates in a request, the actor provides the BE with the RAAC holding the
corresponding {actor, role} assignment. The BE (i.e., its PDP fun ctionality) takes into account
the nominated role as part of the “privacy context”, in order to specify the BAFS. However, as
already has been analyzed, the BE and FE implementation design sets no explicit restriction
regarding the number of entities being  in charge of these two components. Indeed, in general
the BE and FE components are managed by two different authorities. Hence, the flexibility of
the PRISM architecture implies for a preliminary authorisation procedure, this time
concerning the BE’s inte roperation and collaboration with the FE. Consequently, when an
actor introduces himself to the BE through his RAAC, the BE will not be capable of serving
that actor until the FE co-operator recognizes it and acknowledges its credibility.
At this preliminary authorisation proceedings the BE is responsible for forwarding to the FE a
different RAAC which encompasses a respective {role, purpose} assignment.  This RAAC
denotes at the FE that:

1. The BE collaborator is a valid one and hence trustworthy.
2. The specific indicated actor representing a specific role participates in a request in

order for a specific purpose to be fulfilled. That should lead to a first level of FE
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configuration, according to the purpose which is to be processed and concluded.
It is in the second stage of the authorisation procedure that the BE reviews and evaluates the
corresponding {actor, role} pair assignment to specify its prospective behaviour

5.2 Back-end internal architecture
Figure 5 provides a high-level view of the BE internal architecture.

Figure 5: Back-end architecture

As illustrated in the figure, the fundamental components of the BE are the Monitoring Agents
(MAs). A MA comprises a PDP/PEP pair and is in charge of mediating between a monitoring
application and the Processing Unit of the FE that provides the data structures that are subject
of the different BAFSs that are executed in the context of a monitoring application execution.
That is, a MA is the peer entity of a FE Pr ocessing Unit on the one hand and of the monitoring
application on the other. It is a stateful component that is initialised when the execution of a
monitoring application begins. For the effective management of the data it receives by the FE,
each MA uses a data buffer, based on a relational database and enabled to handle the
incoming data as a stream.
It should be also noted that each MA of the BE constitutes an autonomous entity, kind of an
independent BE instance. After its initialisation and until the  termination of the associated
monitoring application, each MA is acting autonomously to what concerns the communication
with its peer entities in terms of exchanging control messages and data, as well as, the PPC.
Therefore, each MA implements the full co mmunication stacks. Additionally, each MA logs
during its lifetime all the actions it performs and any data disclosure, along with the associated
metadata that reflect the requesting entities, the context, etc.
The Monitoring Agents Manager (MAM) is the BE  component that manages the pool of
available MAs. In the beginning of a monitoring application’s lifecycle, the monitoring
application contacts the MAM once in order to establish an association with the MA that will
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constitute the serving MA for this appl ication. The MAM initialises an idle MA from the pool
and from this point onwards the MA acts autonomously.
All the MAs comprising the BE share three different types of components:

a) Data Repository, which implements the data storage infrastructure . It is noted that the
Data Repository constitutes in essence a separate layer of the system; in that respect it
can be distributed and it may be shared not only by the MAs comprising the BE, but
also by other BE instances.

b) PRISM Ontology, that is, the semantic mod el of the system. The PRISM Ontology is
encapsulated by a software component which:

i. provides an API to the MAs in order for the latter to retrieve the necessary
information;

ii. is being contacted by the PPC when an updated version of the PRISM
Ontology must be installed at the BE.

c) Embedded Processing Components, which constitute a library of software tools. More
specifically, this library offers to the MAs:

i. Tools for analyzing the incoming IPFIX data structures, as well as for creating
the outgoing ones.

ii. Tools for data encryption and decryption.
iii. Tools for verifying the RAACs.
iv. Rich library of data anonymisation functions, such as the ones described in

[KOUKIS2006].
v. Tools for performing transformations between different types of data.
vi. More advanced transformation  tools, such as data aggregation.
vii. Means for execution tasks imposed by the legislation, such as the notification

of the authority and the information of the data subject.
viii. Components for the internal execution of several parts of the

monitoring applications’ logic, i.e., parts that are characterised as privacy -
sensitive.

Note also that the embedded processing components have their semantic representations in the
PRISM ontology, as described in Section 6.

5.3 Privacy-preserving controller
The privacy preserving controller (PPC) holds multiple roles of administrative nature:

 It is the Source of Authority (SoA) of the PRISM PMI.
 It incorporates the PRISM Access Control Model Editor, a user -friendly software tool

devised for the specification and management of the s emantic model. This tool is not
absolutely necessary, meaning that since the access control model is based on an OWL
ontology, any corresponding platform (such as Pro tégé [PROTÉGÉ]) can be used for
the specification and management of the model. However, th e use of a user-friendly
editor hides the technical details of the underlying model, requiring no particular
technical expertise by its users.

 It is a monitoring application itself, in the sense that it constitutes the entry point for
the authorities for the execution of law enforcement tasks.
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 It maintains the (root) crypto secrets w hich are necessary to retrieve the per -flow
encryption keys when not provided through other means (e.g. escrow approaches); this
for instance occurs under specific conditions s uch as legal action/inspection, etc.

It is also worth mentioning that as the role of the PPC is administrative, it is not typically
involved in real-time operation. In fact, in a small scale application the minimal set of PPC
tasks can be fulfilled by manually configuring, e.g., static cryptographic keys to both FE and
BE. Such a system has the obvious drawbacks including tedious and error -prone
configuration, as well as, potential security risks.
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6 Semantic model
In order for the access control framework to duly include the regulatory provisions, our
approach is to use a semantic information model that associates personal data, services and
roles with explicitly defined access rules. In that respect, the approach taken is to express any
related information by means of an ontology, which is implemented using the W3C Web
Ontology Language (OWL) [OWL].
The vision is that the ontology should be as detailed as possible in terms of the various types
of personal data monitoring services and roles, so that the wide st range of services and
situations when personal data are involved can be covered. This is similar to what the
Common Procurement Vocabulary (CPV) [CPV] represents for public procurement in
Europe; it provides an exhaustive –almost semantic– list of several thousands of products that
can constitute subject of public procurement.

6.1 Description of PRISM ontology
In order to associate the personal data with specific processing tasks, the identification of the
particular type of each data item is necessary. Mor eover, in order to define the appropriate
rules that will regulate the disclosure or processing of a personal data item with respect to the
purpose for which the information is requested by the data processor, a similar taxonomy of
the monitoring-related services must be present. These taxonomies constitute separate
subgraphs of the ontology. Therefore, the ontology provides a detailed vocabulary of data
types and services’ types, structured in an hierarchical way with well defined inheritance
rules, which enables the system to associate all privacy related decisions to semantically
specified notions. An equivalent taxonomy is needed for the roles of the involved actors and
therefore a corresponding roles’ subgraph is defined.
These three subgraphs constitut e the base of the semantic model, being the domain for the
specification of the rules, which comprise another subgraph. However, several additional
concepts are modelled by the PRISM Ontology, such as the software tools included in the
libraries of the Back-End.
In the following, the description of the ontological classes is provided. It should be noted that
this is a characteristic, descriptive but yet preliminary version of the PRISM Ontology.

6.1.1 PersonalData class
The types of data that PRISM deals with are  defined as instances of the PersonalData
OWL class. Inheritance hierarchies, as well as other relationships between data are defined
using OWL properties. The instances of this class are organised using three hierarchies:

i. The first hierarchy specifies the  inheritance of characteristics, referring to the rules that
regulate the collection and processing of data. The “root” data type of the subgraph is
the AllPersonalData  type, from which all the other types inherit, while “first
level” descendants of the AllPersonalData type include
PersonalInformation , LocationData, BillingData,
CommunicationData , etc. These types constitute general data types, in essence
categories of data types. This hierarchy is implemented by means of the
inheritsFromData  object OWL property.

ii. The second hierarchy defined inside the PersonalData class deals with the detail
level of data types. For this purpose, two properties are defined,
lessDetailedThan  and moreDetailedThan , being the one inverse to the
other. In that respect, the IPv4SourceAddress personal data type is
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moreDetailedThan  the IPv4SourceAddress1stOctet , while with respect
to location data (which according to the legislation are subject to monitoring activities,
e.g., [2006/24/EC]) the Country data type is lessDetailedThan the
GPRSCellID.

iii. The last relationship between the instances of the PersonalData class is the one
that defines complex types resulting from simpler ones. In that respect, the
IPv4ProtocolHeader  of an IP datagram contains the IPv4TTL,
IPv4DestinationAddress , IPv4SourceAddress , etc. data types. The
corresponding relationships are implemented by means of the containsType and
its inverse isContainedToType  OWL properties, which in essence define an
AND-tree hierarchy.

It should be noted here that the PersonalData class of the PRISM ontology is not meant to
only include data types that are explicitly contained in the monitoring flows or are part of the
monitoring procedure (e.g., date/time of the monitoring, location data, etc.); data types derived
from processing procedures (e.g., information related to billing) and information otherwise
associated with the data subjects (e.g., personal information of the operator’s subscribers) are
considered for inclusion in the model.
The following Figure 6 illustrates part of the personal data subgraph, along with the OWL
properties that implement the three types of relationships between the personal data instances,
as described above. The following figure is provided as a explanatory preliminary snap shot of
the PersonalData class of the PRISM ontology.

Figure 6: PRISM Ontology – Personal Data Subgraph

6.1.2 Services class
The different monitoring services’ types are organised as an hierarchy that defines inheritance
of characteristics. All the defined types constitute instances of the Services OWL class.
The “root” service type is the AllServices type, from which all the other services’ types
inherit, while “first level” children of AllServices type instance include
PerformanceMonitoring, LawEnforcement, Billing,
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TrafficClassification , etc. These types constitute general monitoring services’
types. This hierarchy is implemented by means of the inheritsFromService  object
OWL property. It is noted that multiple inheritance is possib le. A second hierarchy defined for
the monitoring services’ subgraph is an AND -tree hierarchy which denotes the decomposition
of a service to subservices. It is implemented by means of the consistsOf OWL object
property. As an example, a Billing service can be decomposed to
VolumeOfExchangedDataMetering  and
VolumeOfExchangedDataAccounting  subservices.
.

6.1.3 Roles class
As described in Section 5, the different actors of the PRISM system are assigned specific
roles. These roles find their semantic representation as instances of the Roles OWL class.
The roles fall into three main categories: data subject, data processor and Privacy Authority.
Therefore, the “root” instance of the class, denoted as AllRoles, has three first-level
descendants (DataSubject, DataProcessor and PrivacyAuthority) which
constitute root instances of discrete subgraphs. The subgraph corresponding to the service
provider includes all the members of the organisation that performs the network monitoring
(e.g., the ISP), as well as potential subc ontractors, third-party organisations, the research
community that uses aggregated monitoring data, etc. On the other hand, the Privacy
Authority subgraph concerns all entities involved in law enforcement. Regarding the data
subject, it can be argued that it cannot be further decomposed. However, considering the case
where the data subject is an organisation the communications of which constitute a traffic
flow, the members of the organisation (e.g., the different departments or humans) can be
regarded as “sub- data subjects” that differentiate the policies that apply. This topic is
currently under investigation.
The data processor and Privacy Authority subgraphs are characterised by two kinds of
hierarchies. The first one is an OR -tree hierarchy which serves as the means for specifying the
inheritance of characteristics between the members of each subgraph and is implemented by
the inheritsFromRole  OWL object property and its inverse. Such hierarchies are quite
typical in role-based models. On the other hand , an innovative feature of the PRISM model is
the specification of an AND-tree hierarchy for the roles. This hierarchy defines the explicit
membership of some roles’ types to other types. As an example,
PrivacyAuthorityLawfulInterceptor  is a logical role which consists of the well -
defined physical roles’ types that must all consent and interact in order for a Lawful
Interception procedure to be executed. This hierarchy is implemented by means of the
isPartOfRole OWL object property.

6.1.4 ExclusiveCombinations  class
The ExclusiveCombinations  class of the PRISM Ontology is meant to describe how
data types are mutually excluding the one the others from disclosure. As an example, each of
the bytes of an IP address by itself is normally harmless from a privacy protec tion point of
view. However, altogether they compose the actual IP address, which is certainly a personal
data item and therefore the disclosure of all four of them to the same entity in a way that is
able to recompose the IP address should be prevented. I n that respect, each instance of the
ExclusiveCombinations  class is related with the Excludes OWL object property to
the different data types that constitute an exclusive combination.
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6.1.5 Conditions class
The Conditions class of the PRISM Ontology is purposed  to specify conditions that must
meet in order for some access rights to be enforced. As an example, certain access rights may
be granted to an intrusion detection application if and only if there is an evident intrusion
attempt, while the same access righ ts may be redundant in normal situations

6.1.6 Rules class
Access control rules are defined as instances of the Rules class of the PRISM Ontology, in
order to regulate the execution of services. Every instance of the Rules class is associated
with a {personal data type, service type, role type} triad, using the corresponding
refersToData, refersToService  and refersToRole OWL object properties, and
defines one or more properties that specify the permitted/forbidden actions of the role over the
personal data type , in the context of the execution of the service type under consideration,
possibly along with certain complementary actions that must be additionally performed by the
system. Moreover, the OWL object property appliesUnderCondition  links the rule
with the conditions (if any) that must meet in order for the rule to apply, with respect to the
Conditions class of the PRISM Ontology.
With the use of OWL annotation properties, every rule contains the following information:

 DisclosureOfData: it defines whether the data of the specified type should be
disclosed or not to the specified role in the context of the execution of the specified
service.

 RetentionPeriod: it specifies the period for which the data of the type under
consideration should be retained.

 ModificationPermission: it defines if the specified role should be granted with
write/modify rights on the data of the specified type.

While the information above defines the “core” of the rule, additional properties specify the
complementary actions that should be  potentially executed:

 DataSubjectInformation : it refers to the right of the user to be informed when
the rule is applied (i.e., when in the context of the specified service, the personal data
of the specified type are disclosed to the specified role, or t heir modification takes
place). Naturally, in order for this to be realised, the data subject must be an
identifiable user, such as a customer of the network operator.

 DataSubjectConsent : it enables the user to be asked about explicit consent, prior
to enforce the body of the rule. Similarly to the case above, the identification of the
data subject must be possible for this provision to be feasible.

 AuthorityNotification : it forces the notification of the Privacy Authority
when the rule is applied.

Finally, a rule may be characterised by certain meta -properties that serve for resolving
conflicts between contradictory rules:

 appliesToPersonalDataDescendants : this binary property specifies whether
the rule is inherited to the descendants of the specified data type, with respect to the
corresponding subgraph of the ontology and the inheritance relationships.

 appliesToServiceDescendants : similarly to the case above, this binary
property specifies the inheritance of the rule to the service type descendants.

 appliesToRoleDescendants : it refers to the inheritance of the rule to the
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descendants of the role’s type.

 OverrideDataSubjectPreferences : in certain cases, the user may have
specified privacy preferences that contradict with the rules of the ontology; this
property serves for defining which rule dominates over the other. As an example, a
lawful enforcement related rule may override a confidentiality preference expressed by
the user.

 OverrideExclusions : when two or more requested data types are mutually
exclusive when about to be disclosed or processed, this binary property defines
whether possible exclusions defined in the Conditions class for the data type under
consideration are ignored in the context of this rule’s enforcement.

Finally, each instance of the Rules class is optionally characterised by a textual description,
that is, a human-readable description of the rule. In that respect, the rdfs:comment
property as specified in the W3C RDF Schema [RDFS] is used.
In Figure 7, an example of an access control rule is illustrated. What this rule states, i.e., its
rdfs:comment property textual description, is that “ for purposes related to QoS provision,
a Network Administrator may have read access to the Differentiated Services Code Point
(DSCP) of a traffic flow. However, no modification is allowed, while such data should not be
retained by the corresponding systems. This rule is not inherited to the descendants of the
specified data, service or role, while it doesn't override the privacy p references of the data
subject, if any”.

Figure 7: PRISM Ontology – Example of Access Control Rule

That is, an application run by a recognised and authenticated NetworkAdministrator
devised for the DiffServQoSQueueclassification service is authorised to access
the data of type DifferentiatedServicesCodePoint . Note that no instance of the
Conditions class is specified for this rule, while the
DifferentiatedServicesCodePoint  data type is not a member of some instance of
the ExclusiveCombinations  class.

6.1.7 Components class
As described earlier, the back -end tier of the PRISM architecture incorporates several
embedded processing modules for the internal execution of various tasks. These components
have their semantic signature in the Components class of the PRISM ontology
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6.1.8 DataTransformations  class
Regarding the transformations between different data types that these components are able to
perform, they are described by the instances of the DataTransformations  class of the
ontology. As an example, the component semantically defined as
IPv4AddressHeaderHandler  is able to extract from the IPv4ProtocolHeader  a
discrete field, such as the IPv4SourceAddress . This concept is implemented by means of
the transformsDataFromType , transformsDataToType and
usesTransformationTool  OWL object properties that link the
DataTransformations  class with the PersonalData and Components classes of
the ontology.

6.2 PRISM access control model editor
Ontology management tools, such as the very popular Protégé [PROTÉ GÉ], have the
disadvantage of being difficult to be used by people that lack some relevant technical
expertise and understanding of certain technical notions. Therefore, a graphical software tool
devised for the specification and management of the semantic  model will be incorporated to
the PPC. The PRISM Access Control Model Editor targets for its use people that are not
coming from the worlds of computer science or engineering, such as the members of the legal
department of an operator. It will hide all th e technical details of the semantic model from the
user, translating transparently the input provided by the user through the graphical interface to
OWL code that will be consequently disseminated to the Back -End.
The PRISM Access Control Model Editor will  provide –at least– three different views to its
users:

 A view for the management of the different subgraphs of the PRISM Ontology.

 A view for administering the rules contained in the PRISM Ontology.

 A wizard-like view for the step-by-step creation and editing of the rules.
Since several functionalities have already been implemented to some extent, the following
three figures (Figure 8, Figure 9 Figure 10) illustrate respective screenshots of the afore -
mentioned views.
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Figure 8: PRISM Access Control Model Editor: Personal Data Subgraph View

Figure 9: PRISM access control model editor: rules administration view
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Figure 10: PRISM access control model editor: rule creation/editing wizard .
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7 Data plane export protocol
There are two primary data paths to consider within the PRISM architecture. First is the data
plane connection between the front -end and the back-end, by which the front-end sends
preprocessed or protected information resulting from front -end analysis functions to the back -
end for storage and further processing. Second is the data export connection, by which
aggregated or anonymised flow  or packet data may be sent on to analysis applications external
to the PRISM system for further analysis or presentation.
These data paths have similar requirements. Both should be oriented toward common types of
traffic data (e.g. packets, flows, aggrega tes) yet flexible enough to transport diverse types of
traffic data and derived information, as the wide variety of analysis functions possible within
the PRISM architecture cannot be bound to a single data model. Both should be based upon
defined or de facto standards in order to facilitate both the substitution of components within a
measurement ecosystem and to ensure the widest possible utility of the exported data. The
front-end to back-end data plane, especially, should be able to send meta -data in-line to
support the data protection infrastructure.
The IETF’s IP Flow Information Export (IPFIX) protocol [RFC5101] meets all of these
requirements, and as such we have selected it as the basis for the data plane and data export
within the PRISM architectu re. This section briefly describes IPFIX and explores the
applicability of particular features of IPFIX to both the front -end to back-end data plane
connection and the data export to external measurement applications.

7.1 Brief introduction to IPFIX
IPFIX is a unidirectional flow export protocol specified for sending flow information from an
exporter to a collector with a flexible data model. It describes the data records it exports inline
via templates. These templates describe record formats in terms of a st andard, extensible set of
information elements tailored to network traffic data export: timestamps, packet header fields,
counters, and so on. The information model is extensible on the fly using a facility called
“enterprise-specific Information Elements” ; this allows any organisation to specify its own
private information element registry.
While IPFIX is designed with flow data export in mind, it has a very flexible definition of
what a “flow” is; this definition covers essentially any traffic data which share some set of
common properties. A flow, for example, could be as described by the “traditional five -tuple”
of source and destination IP address and port and protocol, or all the traffic sent by a specific
host, or all the traffic consisting of 40 -byte packets observable by a specific observation point.
IPFIX supports a mechanism called Options for the inline representation of non -flow data.
Options are a special type of record. They are bound to a specified “scope” and provide
additional information about this scope. Example scopes included entities within the
measurement infrastructure (e.g. an Exporting Process) or within the protocol itself (e.g. a
Template). Options are widely used by the protocol for interoperable extension of the export
mechanism and for metadata export.
IPFIX can be adapted to a wide variety of network traffic measurement applications given
these features. A specific adaptation of IPFIX to sampled packet measurement and export is
specified by PSAMP. PSAMP defines a set of sampling  techniques, additional standard
information elements for representing packet -specific information and sampling technique
metadata, and an Options-based mechanism for exporting this sampling technique metadata
inline.
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7.2 Data  plane
For the data plane connection, it is assumed that the front -end will act as an exporter, and the
back-end as a collector. The front -end should be configurable to send data to any IPFIX
collector, and the back-end to accept from any IPFIX exporter that is capable of producing the
information required of the specific analysis functions running on it. In other words, the
PRISM architecture allows for the replacement of components, provided that they implement
the necessary interfaces.
Since the front-end generally does not export raw , unprotected flow data, the data plane
connection will use IPFIX less for its standard information model and more as a standard
transport protocol and framing mechanism. While IPFIX’s flexible flow key mechanism does
allow the export of aggregate or other  summary information using standard information
elements, data protected by per -field encryption schemes, or information specific to a front -
end/back-end analysis function pair, should instead use IPFIX enterprise -specific Information
Elements to represent  this information. Any inline metadata required to support per -field
encryption schemes or any other protection scheme that requires direct information sharing
between the front-end and the back-end should use IPFIX Options.
If a front-end analysis function yields non-encrypted but anonymised data, then standard
information elements should be used, along with the catalogue of techniques and the Options -
based metadata export specified in [IPFIX -ANON]4.
Similarly, if a front-end analysis function yields sam pled packet data, then the information
model and Options-based metadata export specified by PSAMP should be used.
The IPFIX Template mechanism provides a natural means to describe the data -plane
interfaces between front-end and back-end analysis functions.  Specific front-end analysis
functions may specify their interfaces in terms of their output templates, and back -end
analysis functions in terms of their input templates.

7.3 Data  export
For the data export connection, it is assumed that the back -end will act as an exporter. The
collector on the other end of the connection belongs to the external application, and is not
specified by the PRISM architecture. Any information exportable via this data export should
also be exportable via IPFIX Files as specified i n [IPFIX-FILE]; this allows for a more natural
usage of exported data for public dissemination for research studies, and for interoperability
with external measurement applications with which an on -line transport connection is not
feasible.
Data export should, to the extent possible, use standard, IANA -registered IPFIX information
elements in order to improve interoperability with external applications. Export of information
not specified by the standard IANA registry should be exported by enterprise -specific
Information Elements, described inline by the Options mechanism specified in [IPFIX -ET].
As with the data plane, anonymised exported data should use the Options mechanism
specified in [IPFIX-ANON] to describe the properties of the anonymisation techniqu es used,
and sampled packet data should use PSAMP.

7.4 Summary of data and control plane connections
A summary of the arrangement of the data plane, control plane, and export interactions in the
PRISM architecture is shown in Figure 11 below. Data plane interactions are shown in black

4  Note that the authors of this in -progress standards effort are PRISM project partners. The development of this standard will
proceed inline with PRISM’s requirements for it.
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along the left side of the diagram, and control plane interactions are shown in red along the
right.

Figure 11: Summary of schematic diagram of interactions in the PRISM archit ecture
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8 Monitoring framework
In this section we describe at high level how the traffic monitoring activities should be carried
out within the PRISM architecture and why.
Many traffic monitoring applications use full packet information (e.g., IP headers and
potentially also the user payload) for processing, even though a given task (purpose for
monitoring) actually depends only on a small subset of the information available in the trace
files or in live traffic. Full trace files or live traffic naturally pose  a clear privacy risk as the
available information can be used by a malicious monitoring application (or user) to extract
far more information from the data than necessary for a given monitoring task, including
legally-protected, privacy-sensitive data. In summary, this means that many current
monitoring applications may tend to compromise the privacy of the end-users.
It is clear that the vast majority of common monitoring purposes can be achieved using much
less information than involved in the processing  of full trace files.
PRISM separates raw packet capture from additional monitoring analysis tasks. Only the
information required for the actual monitoring purpose is analysed further. Therefore in many
cases, the data given to the monitoring application d oes not include any privacy-sensitive
information.
A monitoring activity receives data for processing or presentation from the PRISM back -end,
the external access point towards the PRISM architecture. There are three main possibilities
how a monitoring application can be adapted to be compatible with the PRISM framework:

a) Modified source data: no adaptation of application necessary; PRISM provides
modified or reduced packet traces, flow data, or other traffic summaries to the
application; this source data i s specifically modified or reduced to mitigate privacy
risk.

b) Hybrid pre-processing: splitting the application into a pre -processing stage to handle
privacy-sensitive data (which may itself be further split between the front -end and
back-end within PRISM) and a post processing-stage “main part” of the application.

c) PRISM conversion: full processing is done within PRISM, and only results are
returned to the monitoring application (e.g., raw result data as input to the monitoring
application’s visualization pro cess.)

The appropriate choice depends on the information required to obtain the desired results, and
the types of data that a particular monitoring application can take as an input. Consider the
following examples: A monitoring purpose requiring detailed IP address processing should by
default be implemented via full conversion, while a monitoring purpose measuring the packet
size per TCP port distribution can be handled by reducing packet data at the front end and
passing only packet size summary or synth etic packet data to the application.

8.1 Processing of modified source data
The simplest adaptation of monitoring applications to preserve privacy is to modify or reduce
the packet traces, flows, or flow aggregates within PRISM, and provide this modified data  as
input to the monitoring application. In this case, no modification of the application is
necessary. The focus in this case is on the adaptation of the traces. This can mean on the one
hand to isolate the “suspicious” flow as described in Section 2.1.1 and on the other hand to
just filter the information required for the monitoring purpose and anonymised or synthesize
the rest of the data (e.g. with random numbers). The decision whether information is handed
over to the monitoring application can be base d on the results of pre-processing in the front-
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end. The monitoring application then operates as it would without PRISM, treating PRISM as
a sensor or data source as any other.
This approach allows deployment of suitable monitoring applications without mod ification.
This has a positive impact on end -user privacy with minimal effort, as currently most
monitoring applications observer full packet payload regardless of the monitoring purpose.
Three examples below clarify how PRISM could modify or reduce the tr aces before handing
them over to the monitoring applications.
As a first example, getting the distribution of traffic per destination or source port addresses
usually uses the captured packet headers or full packets including payload. In this case, the
only information actually required is the packet size and the port numbers. For such a
monitoring scenario PRISM ensures the privacy of all users. The FE deletes the payload and
all header fields except the packet size and port numbers, and sends summary inf ormation to
the BE via IPFIX. The BE then generates synthetic anonymised packet header fields, adds the
real packet size and port numbers, and hands over the packets to the monitoring application.
As a second example, let us consider a traffic planning and  network dimensioning scenario,
where, in general, the key input parameter is knowledge about the traffic volumes between
different source-destination pairs. Assume further that one is given a network planning tool
that accepts some type of traffic trace f ile(s) as input parameter. This scenario can be
implemented several ways within the PRISM framework. Let us discuss two options briefly.
The most straightforward method is to extract the source and destination IP addresses and the
size of each packet. As shown in [D3.1.1], a one-to-one mapping of IP addresses for
anonymisation is vulnerable to rather trivial attacks. Assuming that network addresses are not
considered to be personal information, the IP addresses are reduced to the network portion of
the address. Thus, for each packet the front -end extracts two network addresses, dst and src,
together with the packet size, and hands this information to the back -end. Note that this
information is clearly sufficient for the network planning purposes. At the next  stage, the
back-end generates synthetic anonymised packet header fields, adds the real packet size and
network portion of IP addresses to the packet, and hands the packet over to the network
planning application in appropriate trace file.
A somewhat more sophisticated solution to this problem is as follows. Instead of using per
packet time series, for network planning purposes knowledge about observed traffic volumes
between different networks should be sufficient (with appropriate time bins if the dynami c
nature of the traffic is taken into account). Hence, the front -end can already aggregate several
packets and provide the average byte and packet rates to the back -end. The back-end then
generates artificial traffic according to the measured rates. This m ethod has the added
advantage of being more scalable, as it greatly reduces the data volume between the FE and
the BE.
A third example is an IDS/IPS scenario, where it is obvious that the information cannot be
reduced as much as in above. In particular, f ull captured packets with payload are used in
applications such as SNORT, e.g., to detect malicious traffic. In other words, it is not possible
to identify malicious traffic based only on some header fields and it might be necessary to
provide the actual payload to the traffic monitoring application. The advantage of the PRISM
system in this context is the fact that it can be used to reduce the amount of traffic inspected
by the external application, which also improves privacy because less sensitive inform ation is
exposed to the third party application. To this end, the PRISM system is used to classify
suspicious traffic at the front -end based on algorithms such as that presented in
[BIANCHI2008]. One main criterion for the initial classification is the acc uracy of the
classification. Depending on the case, we can tolerate some normal traffic to be inspected by
an IDS such as SNORT, while no malicious traffic should escape the preliminary detection. In
the ideal case, the traffic analysed by SNORT consists s olely of suspicious traffic, thus
ensuring that the privacy of “normal” users is not violated.
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8.2 Hybrid pre-processing at the front-end
If some privacy-sensitive data must be processed for a given monitoring task, and when the
monitoring application is easi ly separable into stages where the privacy -sensitive work can be
isolated in a first step, then a hybrid solution for integration is to pre -process the privacy
sensitive information at the front -end. The results of this pre -processing, together with
privacy-insensitive information from the traffic stream, is then sent to the back -end and stored
for further processing. The main part of the monitoring application is outside of the PRISM
system; i.e., the application retrieves the requested information from th e back-end. The
monitoring application performs the primary processing steps and presents the results.
An example of such an application could be an MPLS -based route optimiser. In particular,
consider a task where one has set a criterion that in an MPLS ne twork the load on the
monitored link(s) should be less than 80%. If the traffic load is greater than 80% (say, in 1
minute interval), then the administrator should get information about the load per MPLS label
(actual interval + five intervals before) to r eroute traffic and reduce the load on the
corresponding link. If the load is below 80%, then the administrator should not get any
information as MPLS labels may be bound to users (privacy risk). The front -end filters the
packet size and the MPLS label. For  a one minute interval the packet size per MPLS and of all
packets is summed up. If the load is above 80% the key is sent to the BE and stored there. The
information is decrypted and sent to the monitoring application. Information that is older than
5 intervals is deleted from the database.

8.3 Full PRISM conversion
Full conversion of an application into PRISM front -end and back-end analysis functions is
recommended when complex or resource -intensive processing on privacy -sensitive data is
necessary. This is the case when the processing cannot be performed at the front -end due to
limited storage, memory or processor power. As privacy -sensitive data cannot be given to
components outside the PRISM system, the processing normally performed in the monitoring
application itself has to be done within the PRISM back -end. The final results of the
processing are handed over to the monitoring application. In this case the monitoring
application is used for presentation of the results or for further processing.
As an example, consider a simple billing application that is based on the amount of data that
have been downloaded during the period of a month by a registered customer of a provider. In
such a case, the back-end can do the processing of the corresponding metadata an d return to
the billing application only the aggregated volume of data.

8.4 Proposed usage of the Measurement Infrastructure for Network research
(MINER) in the PRISM prototype

MINER5 is a programmable measurement infrastructure that integrates existing tools and
provides higher-level services on top of the existing tools. It enables users to specify
measurement scenarios, schedule (repeated) executions and retrieve the results. The services
are accessible via a tool -agnostic and unified programming interface o n top of which
measurement applications can be developed.
The usual process for a MINER user is to use the MINER API with the following three steps:

1. Specification of scenarios (i.e. select/configure tools and monitoring agents)
2. Schedule executions of scena rios
3. Retrieving results and/or alarms

In an integration with PRISM, MINER mainly covers the specification and execution of
scenarios, while the third step only provides a very limited set of results (if any, e.g. status

5 http://miner.salzburgresearch.at
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information or alarms). The main res ults of the monitoring tasks (i.e. the packet or flow
traces) would go directly into the PRISM storage in the back -end to avoid strong
dependencies between MINER and PRISM.
Figure 12  below shows the potential interaction of MINER  with the PRISM FE and BE. The
back-end control interface would be used by a so called “MINER Tool”, which allows to
control the back-end and consequently also the front -end by the MINER infrastructure via the
Tool API.
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Scenario
Storage

API
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Figure 12: Usage of MINER in the PRISM project

Having this clear separation between MINER, the front -end and the back-end, the PRISM
prototype has several advantages:

 MINER can be very helpful in carrying out tests
 MINER does neither store privacy -sensitive data, nor it has any point of access to this

data
 Administrator of the measurement tasks cannot directly access privacy -sensitive data,

as it is separated from the users of the monitoring applications
 Monitoring scenarios are stored for documentation

http://miner.salzburgresearch.at
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 Addition of new monitoring tasks to one or even multiple front -ends can be done via a
simple API

 If some artificial traffic is required for an evaluation scenario, traffic generators can
also be controlled by the MINER platform

 Further information during the monitor ing process (e.g. SNMP information) can be
collected by MINER

MINER therefore comes with a lot of features, while it reduces the implementation effort and
allows easy control of the demonstration scenarios. In summary, this approach exploits
functionality of MINER that can be helpful in PRISM while at the same time there is a very
clear decoupling between MINER and PRISM components and no unwanted dependencies
are created.
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9 Conclusions
This deliverable provides a first level of specification for the PRISM system architecture. The
specified system is a general -purpose network traffic monitoring system that provides strong
protection for personal data in a wide variety of monitoring applications. The architecture that
emerges from this document has several fe atures unique in network traffic monitoring
systems. First is the separation of trust between network observing and traffic analysis
components, allowing the storage and analysis of data without allowing the storage and
analysis components full access to t he data; this is achieved through novel cryptographic data
protection algorithms. Second is semantic access control, which provides access to
information at each step of an analysis based on the wider “privacy context” of each
information request. Third is  the treatment of the applicable legal and regulatory environment
for monitoring, not just during the design of the system but at runtime as well, by predicating
access control decisions in part on the provisions of the law. While the core system is in eff ect
a framework, providing a set of services from which privacy -aware monitoring applications
can be built, the project will also adapt selected monitoring applications to operate in concert
with this core.
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